

Basic Introduction

maxwellcai.com

What is machine learning?

Search: "what is machine learning"

	۲
E News Books More Settings Tools	

What is machine learning?

Could be as simple as curve fitting!

Typical applications in general:

- Classification
- Regression
- **Dimensionality reduction** lacksquare
- Control

Why Machine Learning?

Think about a simple decision tree:

What is machine learning?

Desired

result

Knowledge base & rules Expert systems Human input

Features and result 'Decision' system Limited human input

Source: <u>Machine Learning for an Expert System to Predict Preterm Birth Risk</u>, Woolery et al. (1994)

Alvs MLvs DL

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472

Credit: Alexander Amini/MIT

Categories of machine learning

Reinforcement

Learn from mistakes

Supervised

Classification

Naive bayes Support vector machine Decision tree Random forest **K-Nearest Neighbor** Logistic regression

Unsupervised

Clustering K-means K-medoids

PCA

SVD

Regression

Linear Generalized

Categories of machine learning

Reinforcement

Dimensionality reduction

Discrete Markov decision process Deep Q Network A2C A3C

Continuous DDPG NAF

... and many more...This list is incomplete!

Linear Regression

Iteratively Optimizing the parameters in a linear function

$$\hat{y} \equiv f(x) = wx + b$$

Such that

 $L(\hat{y}, y)$

Reaches a minimum value.

Classification: k-Nearest Neighbor

... is a **classification** algorithm

... based on a voting process

Image source: Wikipedia

Classification: Decision Tree → Random Forest

... is a binary classification algorithm, not a regression algorithm ... Gives the **probability** of each class

Classification: Logistic Regression

K-means clustering

Support Vector Machine

Animation source: GitHub.com/carefree0910

... is a **classification** algorithm

... does not provide probabilities, but only output class identities.

... aims to find an optimal way (perpendicular to the support vector) to separate different classes

Boser et al. 1992; Cortes & Vapnik 1995

What is the machine actually *learning*?

Machine learning is an optimisation process

Learning: Optimizing the loss function

Objective: minimize the **difference** between predicted value the actual value

$$\mathbf{W}_{j+1} = W_j - \alpha \nabla \mathscr{L}(\mathbf{W}_j, b)$$

Learning rate

Parameter θ

Parameter θ

A few more terms...

Image credits: Deep Learning (Goodfellow, Bengio & Courville); Tarang Shah

The bias-variance tradeoff

What if the problem is more complicated?

What if the problem is not so simple?

Possible solutions:

- map into another space (kernel trick)
- Add more layers (deep learning)

Kernel Trick

1.5