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Categories of machine learning

UnsupervisedSupervised Reinforcement

Learn from the labels Detect patterns in the data Learn from mistakes
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From Brute Force to AI
IBM’s Deep Blue



Think about AlphaGo Zero

Are recurrent neural networks (RNNs) useful in this kind of applications? 
• Utilise information in the past steps (RNNs can probably help)

• Make decision for the near future (RNNs can probably help)

• Make sequences of decisions for the far future that maximise gains (RNNs can’t help)

• Deal with an infinitely large solution space (RNN can’t help)4



Reinforcement Learning
… is an area of machine learning that deals with sequential decision-making.

… is a task of learning how agents ought to take sequences of actions in an environment in order 
to maximise cumulative rewards.

… learns a good behaviour through its experience.

… forms a balance between the exploration/exploitation dilemma

Bellman (1957); François-Lavet et al. (2018), arXiv:1811.12560

State 

Action 

Observation

st ∈ 𝒮

at ∈ 𝒜

ωt ∈ Ω
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Agent & Environment



RL agent learns to balance a cart pole

Image source / movie source 7

https://jsteinhardt.wordpress.com/2010/06/26/the-underwater-cartpole/
https://www.youtube.com/watch?v=5Q14EjnOJZc&feature=emb_logo


How do we formulate the process of sequential 
decision making?



Playing Tic-Tac-Toe
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Strategy to move to the next step: 
• Look ahead one step

• Take an action from one of the following strategies:

• Randomly

• Choose the action corresponding to the largest value (greedy)



The Q-learning Algorithm

Image source: Shaked Zychlinski/Medium

The problem is that, we do not know the right strategy (i.e., policy) to take actions a priori … 

And sometimes not even the environment is known to us. 

We have to explore the environment…
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The Q-learning Algorithm

Source: Wikipedia

Initial Q-table Updated Q-table

In order to decide the best strategy given the current state  and action , we can design a table  to 
query the future expectation.

st at Q

11



Deep-Q Network (DQN)
Mnih et al. (2013); Image: Ankit Choudhary

The Q-table can quickly become too large.

How about replacing it with a neural network?

https://arxiv.org/abs/1312.5602


Markov Decision Process

Brownian motion has Markov property (memoryless).   Image source: Wikipedia

The evolution of the environment is usually modelled as a Markov Decision Process (MDP).
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Trajectories of an MDP

Image source: Shaked Zychlinski/Medium

In MDP, different trajectories may lead to different cumulative rewards, but the 
objective is to optimise from the current state onwards.
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Core Problem
… is to maximise the cumulative reward in an episode.

Greedy: π*(s) = arg max
a

Q(s, a)

Qπ(s, a) = 𝔼[
∞

∑
t=0

γtrt |st = s, at = a, π]

Take action into account:

Bellman’s Equation Qπ(s, a) = r(s, a) + γ max
a′ 

Q(s′ , a′ )

Vπ(s) = Rt = 𝔼[rt+1 + γrt+2 + γ2rt+3 . . . ] = 𝔼[
∞

∑
t=0

γtrt |st = s, π]

Episodical Value Function

Advantage function: 
(the advantage of taking action  in state )a s

Aπ(s, a) = Qπ(s, a) − Vπ(s)
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How does an agent explore the environment?



Dynamic Programming
If the underlying environment is known a priori, we could potentially solve the problem using DP.

“Those who cannot remember the past are condemned to repeat it.” — Dynamic Programming

Cannot solve a big problem?

• The big problem can be defined as a smaller problem, 

plus a trivial step.

• If the smaller problem can be solved optimally, then 

the original problem can be solved;

• If the small problem is still too big, recursively break it 

into even smaller ones, until directly solvable.

• If an optimal solution is found, store the solution so 

that the bigger problem can be solved based on it.

In DP, the environment is known, no need to explore. 
Directly find the optimal solution.
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F(0) = a
F(n + 1) = f(F(n))



Playing StarCraft with DP? 
No-no.
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Monte-Carlo Search

V(St) ← V(St) + α[Gt − V(St)]

- Play a bunch of games; record the experience.

- Collect the rewards at the end of the episode and calculate 

the maximum expected reward.

If the environment is unknown, we will have to explore it by 
interacting with it in many different ways. The more ways 

we try, the more clear we understand the environment.
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Temporal Difference Learning

Final reward

Reward for next time step

V(St) ← V(St) + α[Gt − V(St)]Monte Carlo

V(St) ← V(St) + α[Rt+1 + γV(St+1) − V(St)]TD

Requires a complete episode

Learns from an incomplete episode through bootstrapping
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Sometimes, it is too expensive or even impossible to finish a full episode.



Comparison of Value-based methods

Image source: David Silver21

Environment known Environment unknown 
Exploration cheap

Environment unknown 
Exploration expensive

Optimal substructure Sample a few complete trajectories Sample a few steps
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Exploration vs. Exploitation
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The exploration-exploitation dilemma 
Through initial exploration, we obtain a policy (not necessarily optimal), which is at least better than naive 
guesses. Should we use this existing sub-optimal policy to solve the problem (some rewards guaranteed), or keep 
exploring until we get an even better policy that leads to better results (not guaranteed)?

-armed bandit problemk



Greedy vs. -greedyϵ
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We likely want to find a tradeoff between exploration and exploitation.

Exploitation 
Keep using the current (sub-

optimal) policy

Exploration 
Try other options and see if any 

luck to get better results

Image source: Microsoft Research

Pros: very simple to implement;

Cons: how do we select a proper ?ϵ

Random 
number 

generator

p ∼ [0,1] p ≥ ϵ

p < ϵ



Stabilise the Training with Replay Buffer

There are good actions and bad actions.

It is harmful to update the network with bad actions.

SGD requires data to be independent and identically distributed.

Instead of using the latest experience to update the Q-
network, we accumulate the experience in a replay 
buffer (aka experience buffer), and update the network 
by randomly sampling the replay buffer.

25



Stabilise the Training with a Target Network
Alternatively, we can deter the update of our -network.Q

Intuition: I have an idea of how to play this well, I'm going to try it out for a bit until I find 
something better.
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Playing Atari with a DQN
With a CNN+DQN, an agent accepts high-dimensional 
visual inputs and play the Atari 2600 game at a 
superhuman level!

Credit: leonardoaraujosantos.gitbook.io; Mnih et al. (2013); DeepMind

http://leonardoaraujosantos.gitbook.io


Then don’t explore it. Try to discover some general guidelines (policy).

What if the problem is too hard/expensive to explore?



Policy-based RL
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Example: Traveling from Amsterdam to Rotterdam 
Constraint: no prior knowledge, no maps/GPS.


Solution 1 (value-based RL):  
1. Travel a small distance along all possible directions;

2. Evaluate the distance to Rotterdam. 

3. Repeat (1,2) until Rotterdam is reached.


Solution 2 (policy-based RL): 
1. Ask someone around

2. The person being asked gives a policy “go southwest 

for 80 km”

3. Execute the policy

4. Check if Rotterdam is reached. If not, repeat (1,2,3).



Policy-based RL

Constructing the policy from the value function can sometimes be very expensive. Any shortcut?

Optimise the policy directly (without consulting the value function): policy-based RL

Road sign is a policy
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Deterministic & Stochastic Policies

a = π(s)
action = policy(state)

Deterministic Policy: state-action mapping

ℙ[At = a |St = s] = π(a |s)
proba(action) = policy(state)

Stochastic Policy: probability distribution of 
state-action pairs

Takes uncertainties into account

Rock-paper-scissors
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Formulation of Policy Gradients
To quickly find the optimal policy, we follow its gradients. But how?

∇J(τ) ≡
∇J(τ)
J(τ)

J(τ) = J(τ)∇log[J(τ)]Recall that 

Objective 

Take the grad 
on both sides

J(τ) = 𝔼[r(t)] = ∫ π(τ)r(τ)dτ

∇J(τ) = ∇∫ π(τ)r(τ)dτ = ∫ ∇π(τ)r(τ)dτ = ∫ π(τ)∇log π(τ)r(τ)dτ = 𝔼[∇log π(τ)r(τ)]

We can calculate the policy grad by sampling trajectories and calculate their expectations!

Probability

π(τ) = π(s1, a1, s2, a2, . . . , st, at) = p(s1)
T

∏
t=1

π(at |st)p(st+1 |st, at)

log π(τ) = log p(s1) +
T

∑
t=1

log π(at |st) + log p(st+1 |st, at)

τ = (s1, a1, s2, a2, . . . , st, at)Trajectory

Probability

Take the log 
On both sides
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∇log π(τ) = ∇[log p(s1) +
T

∑
t=1

log π(at |st) + log p(st+1 |st, at)] = ∇[
T

∑
t=1

π(at |st)]Take the grad

Policy Gradients (cont.)
log π(τ) = log p(s1) +

T

∑
t=1

log π(at |st) + log p(st+1 |st, at)

Starting point Ending point

πθ ← πθ + α∇θJ(θ)Policy update

∇J(τ) = 𝔼[∇log π(τ)r(τ)]Recall that

∇J(τ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇log π(ai,t |si,t)) (
T

∑
t=1

r(si,t, ai,t))Therefore 

Gradient ascent!
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Cumulative reward

max. log likelihood (measuring how likely 
the trajectory  is following the current 
policy; similar to KL divergence)

τ



The REINFORCE algorithm
… is a Monte-Carlo Policy-Gradient method

Williams, R. J. (1992); Sutton & Barto (2017)

The policy is updated after each episode.

Good policy can be learned from a large sample of episodes. 
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https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.8871


REINFORCE with Baseline
Monte-Carlo based approaches typically suffer from high variance 
The REINFORCE algorithm is no exception, because the policy is updated by taking random samples.

θt+1 = θt + αGt ∇logπ (at |st, θ) θt+1 = θt + α[Gt−b(st)]∇logπ (at |st, θ)
Common practice: normalise the return (i.e., whitening)

G*t =
Gt − Ḡ

σG

θt+1 = θt + αG*t ∇logπ (at |st, θ)

Sutton & Barto (2015)
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Adding a baseline can make 
REINFORCE learn faster.



Actor-Critic Methods
If we are learning a policy, why not learn a value function simultaneously? 

Can we use the value function to guide the update of the policy?

If so, we can update our policy per-step instead of per-episode.
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Parallel Policy Updating

Mnih et al. (2016); Medium (Emergent // Future) 

Asynchronous Actor-Critic Agents (A3C)
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https://arxiv.org/pdf/1602.01783.pdf
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2


Model-based & Model-free Policy

Image: Dayan & Niv (2008)

Example: Work-home commute 
Task: Find the best way to go home Friday afternoon

Objective: Avoid traffic jams / minimise travel time

Solution 1: Model-based 
• Based on prior experience, build a map

• Mark roads with traffic jams at the rush hours

• Avoid them by finding alternative routing strategies

Solution 2: Model-free 
• Based on prior experience, build a list of action sequences 




• Find the sequence that minimise the traffic jam or travel time

[(s11, a11), (s12, a12), . . . , (s1t, a1t) → R1]
[(s21, a21), (s22, a22), . . . , (s2t, a2t) → R2]. . .
[(sn1, an1), (sn2, an2), . . . , (snt, ant) → Rn]
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https://www.princeton.edu/~yael/Publications/DayanNiv2008.pdf


There are infinitely amount of actions…

What if the action space is continuous?



Gaussian Policy Parameterisation for Continuous Actions

g(x) =
1

σ 2π
exp (−

(x − μ)2

2σ2 )
Common practice: use the Gaussian PDF

Parameterise  and  so that they are 
state-dependent: 

μ σ

π(a |s, θ) =
1

σ(s, θ) 2π
exp (−

[a−μ(s, θ)]2

2σ(s, θ)2 )
μ : 𝒮 × ℝd′ → ℝ

σ : 𝒮 × ℝd′ → ℝ+

θ = [θμ, θσ]𝕋
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Gaussian PDF

Instead of outputting a specific action, outputting a distribution of actions.

But how? Parameterisation.



Deterministic Policy Gradient

• The policy  is stochastic, because it is dealing with a continuous action 
space.


• It can be expensive to derive the gradients because it samples both  and , which typically 
requires more samples. Any cheaper solution?


• Furthermore, the actor-critic policy gradient is on-policy, which results in unstable learning.

πθ(a |s) = ℙ[a |s; θ]

s a

Challenges of using PG to deal with continuous action spaces:
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Let’s say that we are only interested in the best action, and hence deterministic:
a = μθ(s)

which can be considered as a special case of the stochastic policy policy  with .πμθ,σ σ = 0

J(πθ) = ∫𝒮
ρπ(s)∫𝒜

πθ(s, a)r(s, a)dads = 𝔼s∼ρπ,a∼πθ [r(s, a)] = 𝔼s∼ρπ,a∼πθ [r(s, μθ(s))]

Silver et al. (2014); Lil’Log

https://hal.inria.fr/file/index/docid/938992/filename/dpg-icml2014.pdf
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html


Deterministic Policy Gradients

Then use the best action to 
optimise the deterministic policy 

 w.r.t. μ θ

First  w.r.t.  to choose the best action.Q a
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: the value of  pair when policy  is followed: 

: initial distribution over states;


: starting from state , the visitation probability density at state  after following  steps under policy .


: discounted state distribution: 

Qπ(s, a) (s, a) π Qπ(s, a) = 𝔼a∼π[Gt |St = s, At = a]
ρ0(s)
ρμ(s → s′ , k) s s′ k μ

ρμ(s′ ) ρμ(s′ ) = ∫𝒮

∞

∑
k=1

γk−1ρ0(s)ρμ(s → s′ , k)ds

Objective function: . Taking the derivative on both side: J(θ) = ∫𝒮
ρμ(s)Q(s, μθ(s))ds

∇θJ(θ) = ∫𝒮
ρμ(s)∇aQμ(s, a)∇θ μθ(s)|a=μθ(s)ds

= 𝔼s∼ρμ[∇aQμ(s, a)|a=μθ(s) ∇θ μθ(s)]

Notations:

Silver et al. (2014); Lil’Log

https://hal.inria.fr/file/index/docid/938992/filename/dpg-icml2014.pdf
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html


Putting Everything Together: DDPG
Replay buffer + DQN + Actor-Critic + policy gradient + policy parameterisation = DDPG

Lillicrap et al. (2015)

43



“Standing on the shoulders of giants.” 



Gym

45 https://github.com/openai/gym 

A toolkit for developing and 
comparing RL algorithms.

https://github.com/openai/gym


Stable 
Baselines

46 https://github.com/hill-a/stable-baselines 

https://github.com/hill-a/stable-baselines


RLlib

47 https://docs.ray.io/en/master/rllib.html 

https://docs.ray.io/en/master/rllib.html


Our world is complicated. Reinforcement learning, albeit being extremely 
promising, still has a long way to go.

Bo
ei

ng
 7
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Take Home Messages
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Q-learning 
… uses value functions to measure the value of an action  given state ;

… stores the values in a lookup table ;

… infers/approximates the optimal policy  according to ;

… is a model-free, deterministic algorithm.

a s
Q(s, a)

π* Q(s, a)

Reinforcement learning 
… is the area of machine learning that deals with sequential decision-making;

… is a task that optimises the behaviour of the agent when interacting with a given environment;

… aims to find a balance between exploration and exploitation;

… models the environment as a Markov decision process;

… stores the experience in lookup tables (Q-tables) or as policies.

Policy gradients 
… directly optimise the policy by sampling (instead of evaluating) the value of a trajectory;

… model desirable actions by learning a probability distribution;

… are applicable to a wider range of problem and generally cheaper to train (comparing to Q-learning);

… sometimes difficult to reach convergence.



Reading Materials
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https://pathmind.com/wiki/deep-reinforcement-learning 


https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html 


https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12  


https://www.davidsilver.uk/teaching/   


https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html 


https://github.com/dennybritz/reinforcement-learning   

Sutton & Barto (2015)

If you are interested to learn more:

https://pathmind.com/wiki/deep-reinforcement-learning
https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html
https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12
https://www.davidsilver.uk/teaching/
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://github.com/dennybritz/reinforcement-learning
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

