

## Introduction to **Deep Learning**

### **Reinforcement Learning**



maxwellcai.com





### Categories of machine learning



### Reinforcement

#### Learn from mistakes







### **From Brute Force to Al**



 $n: \le n^n$  iterations 8: 8<sup>8</sup> = 16777216 ~ 10<sup>7</sup>



### Think about AlphaGo Zero



### Are recurrent neural networks (RNNs) useful in this kind of applications?

- Utilise information in the past steps (RNNs can probably help)
- Make decision for the near future (RNNs can probably help)
- Make sequences of decisions for the far future that maximise gains (RNNs can't help)
- Deal with an infinitely large solution space (RNN can't help)

### 21 days

AlphaGo Zero reaches the level of AlphaGo Master, the version that defeated 60 top professionals online and world champion Ke Jie in 3 out of 3 games in 2017.





### **Reinforcement Learning**

... is an area of machine learning that deals with sequential decision-making.

to maximise **cumulative** rewards.

- ... learns a good behaviour through its experience.
- ... forms a balance between the exploration/exploitation dilemma



- ... is a task of learning how agents ought to take sequences of actions in an environment in order

Bellman (1957); François-Lavet et al. (2018), arXiv:1811.12560







Environment

### Agent & Environment

### RL agent learns to balance a cart pole



#### Observation

#### Type: Box(4)

| Num | Observation          | Min      |    |
|-----|----------------------|----------|----|
| 0   | Cart Position        | -2.4     | 2  |
| 1   | Cart Velocity        | -Inf     | Ir |
| 2   | Pole Angle           | ~ -41.8° | ~  |
| 3   | Pole Velocity At Tip | -Inf     | Ir |

#### Actions

Type: Discrete(2)

| Num | Action                 |  |  |
|-----|------------------------|--|--|
| 0   | Push cart to the left  |  |  |
| 1   | Push cart to the right |  |  |

Image source / movie source





### How do we formulate the process of <u>sequential</u> <u>decision making</u>?



- Take an action from one of the following strategies:
  - Randomly
  - Choose the action corresponding to the largest value (greedy)

### **Playing Tic-Tac-Toe**

## The Q-learning Algorithm

The problem is that, we do not know the right strategy (i.e., policy) to take actions a priori ... And sometimes not even the environment is known to us. We have to **explore** the environment...



#### **Q** Table:



γ = 0.95

|            | the second s |      | The second s |       |        |
|------------|----------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------|-------|--------|
| 000<br>100 | 0000010                                                                                                        | 000  | 10000                                                                                                          | 01000 | 001000 |
| 0.2        | 0.3                                                                                                            | 1.0  | -0.22                                                                                                          | -0.3  | 0.0    |
| -0.5       | -0.4                                                                                                           | -0.2 | -0.04                                                                                                          | -0.02 | 0.0    |
| 0.21       | 0.4                                                                                                            | -0.3 | 0.5                                                                                                            | 1.0   | 0.0    |
| -0.6       | -0.1                                                                                                           | -0.1 | -0.31                                                                                                          | -0.01 | 0.0    |

Image source: Shaked Zychlinski/Medium



## The Q-learning Algorithm

In order to decide the best strategy given the current state  $s_t$  and action  $a_t$ , we can design a **table** Q to query the future expectation.

$$Q^{new}(s_t, a_t) \leftarrow (1 - lpha) \cdot \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}} lpha$$

#### **Initial Q-table**

| Q-Table |     | Actions   |           |          |          |            |             |
|---------|-----|-----------|-----------|----------|----------|------------|-------------|
|         |     | South (0) | North (1) | East (2) | West (3) | Pickup (4) | Dropoff (5) |
|         | 0   | 0         | 0         | 0        | 0        | 0          | 0           |
|         |     |           |           |          |          |            |             |
|         |     |           |           |          |          |            |             |
| States  |     | •         | •         | •        | •        | •          | •           |
|         | 327 | 0         | 0         | 0        | 0        | 0          | 0           |
|         |     |           |           |          |          |            |             |
|         |     |           |           |          |          |            |             |
|         |     |           |           | •        | •        | •          |             |
|         | 499 | 0         | 0         | 0        | 0        | 0          | 0           |



#### **Updated Q-table**

|  | Q-Table |     | Actions     |             |             |             |             |     |
|--|---------|-----|-------------|-------------|-------------|-------------|-------------|-----|
|  |         |     | South (0)   | North (1)   | East (2)    | West (3)    | Pickup (4)  | D   |
|  |         | 0   | 0           | 0           | 0           | 0           | 0           |     |
|  |         |     |             |             |             |             |             |     |
|  |         |     |             |             |             |             |             |     |
|  |         |     | •           | •           | •           | •           | •           |     |
|  | States  | 328 | -2.30108105 | -1.97092096 | -2.30357004 | -2.20591839 | -10.3607344 | -8  |
|  |         |     |             |             |             |             |             |     |
|  |         |     |             |             |             |             |             |     |
|  |         |     |             |             |             |             |             |     |
|  |         | 499 | 9.96984239  | 4.02706992  | 12.96022777 | 29          | 3.32877873  | 3.3 |







## Deep-Q Network (DQN)



Mnih et al. (2013); Image: Ankit Choudhary



### **Markov Decision Process**

The evolution of the environment is usually modelled as a Markov Decision Process (MDP).



Brownian motion has Markov property (memoryless). Image source: Wikipedia



## **Trajectories of an MDP**



In MDP, different trajectories may lead to different cumulative rewards, but the objective is to optimise from the current state onwards.



Image source: Shaked Zychlinski/Medium





... is to maximise the **cumulative** reward in an **episode**. **Bellman's Equation**  $Q^{\pi}(s, a) = r(s, a) + \gamma$ 

**Episodical Value Function** 

$$V^{\pi}(s) = R_t = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} \dots]$$

Take *action* into account:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{t} = s, a_{t} = a, \pi\right]$$

**Greedy:** 
$$\pi^*(s) = \arg \max_a Q(s, a)$$

Advantage function:  $A^{\pi}(s, a) = Q^{\pi}(s, a) - Q^{\pi}(s, a)$ (the advantage of taking action *a* in state *s*)

### **Core Problem**

$$\gamma \max_{a'} Q(s', a')$$

$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{t} = s, \pi\right]$$

$$-V^{\pi}(s)$$



### How does an agent explore the environment?

## Dynamic Programming

If the underlying environment is known *a priori*, we could potentially solve the problem using DP.

Cannot solve a big problem?

- The big problem can be defined as a smaller problem, plus a **trivial** step.
- If the smaller problem can be solved optimally, then the original problem can be solved;
- If the small problem is still too big, **recursively** break it into even smaller ones, until directly solvable.
- If an optimal solution is found, **store the solution** so that the bigger problem can be solved based on it.

Start

$$F(0) = a$$
$$F(n+1) = f(F(n))$$

In DP, the environment is **known**, no need to explore. Directly find the optimal solution.

"Those who cannot remember the past are condemned to repeat it." — Dynamic Programming







## **Playing StarCraft with DP?**









No-no. **Considered Location** 



Outcome Prediction

### Monte-Carlo Search



- Play a bunch of games; record the experience.
- Collect the rewards at the end of the episode and calculate the maximum expected reward.

### $V(S_t) \leftarrow V(S_t) + \alpha[G_t - V(S_t)]$

If the environment is **unknown**, we will have to explore it by interacting with it in many different ways. The more ways we try, the more clear we understand the environment.





Monte Carlo

Requires a **complete** episode

Sometimes, it is too expensive or even impossible to finish a full episode.

Learns from an **incomplete** episode through **bootstrapping** 





**Reward for next time step** 

## **Comparison of Value-based methods**



#### **Optimal substructure**

#### **Environment unknown Exploration cheap**

Monte-Carlo

 $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$ 



#### Sample a few complete trajectories

#### **Environment unknown Exploration expensive**

Temporal-Difference  $V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$ 



#### Sample a few steps

Image source: David Silver







## **Exploration vs. Exploitation**

### The exploration-exploitation dilemma

Through initial exploration, we obtain a policy (not necessarily optimal), which is at least better than naive guesses. Should we use this existing sub-optimal policy to solve the problem (some rewards guaranteed), or keep exploring until we get an even better policy that leads to better results (not guaranteed)?





## Greedy vs. $\epsilon$ -greedy

We likely want to find a tradeoff between exploration and exploitation.



Pros: very simple to implement; Cons: how do we select a proper  $\epsilon$ ?

Image source: Microsoft Research



## Stabilise the Training with Replay Buffer

There are **good** actions and **bad** actions. It is **harmful** to update the network with **bad** actions. SGD requires data to be independent and identically distributed.

Instead of using the **latest** experience to update the Qnetwork, we **accumulate** the experience in a **replay buffer** (aka experience buffer), and update the network by **randomly sampling** the replay buffer.



Q learning agent



## Stabilise the Training with a Target Network

Alternatively, we can deter the update of our Q-network.



**Intuition:** I have an idea of how to play this well, I'm going to try it out for a bit until I find something better.





## Playing Atari with a DQN

With a CNN+DQN, an agent accepts high-dimensional visual inputs and play the Atari 2600 game at a superhuman level!



Credit: leonardoaraujosantos.gitbook.io; Mnih et al. (2013); DeepMind



### What if the problem is too hard/expensive to explore?

Then don't explore it. Try to discover some general guidelines (policy).

## Policy-based RL

### **Example: Traveling from Amsterdam to Rotterdam** Constraint: no prior knowledge, no maps/GPS.

### Solution 1 (value-based RL):

- 1. Travel a small distance along all possible directions;
- 2. Evaluate the distance to Rotterdam.
- 3. Repeat (1,2) until Rotterdam is reached.

### Solution 2 (policy-based RL):

- 1. Ask someone around
- 2. The person being asked gives a policy "go southwest" for 80 km"
- 3. Execute the policy
- 4. Check if Rotterdam is reached. If not, repeat (1,2,3).



### Policy-based RL

Constructing the policy from the value function can sometimes be very expensive. Any shortcut?

Optimise the policy directly (without consulting the value function): policy-based RL



**Deterministic Policy:** state-action mapping

$$a = \pi(s)$$

action = policy(state)

Stochastic Policy: probability distribution of state-action pairs

$$\mathbb{P}[A_t = a \mid S_t = s] = \pi(a \mid s)$$

proba(action) = policy(state)

Takes uncertainties into account

### **Deterministic & Stochastic Policies**





### **Formulation of Policy Gradients**

To quickly find the optimal policy, we follow its gradients. But how?

Recall that
$$\nabla J(\tau) \equiv \frac{\nabla J(\tau)}{J(\tau)} J(\tau) = J(\tau) \nabla \log[J(\tau)]$$
Objective $J(\tau) = \mathbb{E}[r(t)] = \int \pi(\tau)r(\tau)d\tau$ Take the grad  
on both sides $\nabla J(\tau) = \nabla \int \pi(\tau)r(\tau)d\tau = \int \nabla \pi(\tau)r(\tau)d\tau = \int \pi(\tau) \nabla \log \pi(\tau)r(\tau)d\tau = \mathbb{E}[\nabla \log \pi(\tau)r(\tau)]$ 

We can calculate the policy grad by **sampling** trajectories and calculate their **expectations**!  $p(s_1) \prod \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$ *t*=1

Take the log  
On both sides 
$$\pi(\tau) = \pi(s_1, a_1, s_2, a_2, \dots, s_t, a_t) = \log p(s_1) + \sum_{t=1}^T \log \pi(a_t)$$

**Trajectory** 
$$\tau = (s_1, a_1, s_2, a_2, \dots, s_t, a_t)$$

 $|s_t| + \log p(s_{t+1} | s_t, a_t)$ 



## Policy Gradients (cont.)

$$\log \pi(\tau) = \log p(s_1) + \sum_{t=1}^{T} \log \pi(a_{t-1}) +$$

Take the grad $\nabla \log \pi(\tau) = \nabla [\log p(s_1) + \sum_{t=1}^{t} \log p(s_t)]$ Starting point

**Recall that**  $\nabla J(\tau) = \mathbb{E}[\nabla \log \pi(\tau) r(\tau)]$ **Therefore**  $\nabla J(\tau) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla \log \pi(a_{i,t} | s_{i,t}) \right)$ 

**Policy update**  $\pi_{\theta} \leftarrow \pi_{\theta} + \alpha \nabla_{\theta} J(\theta)$  Gradient ascent!

 $(a_t | s_t) + \log p(s_{t+1} | s_t, a_t)$ 

$$g \pi(a_t | s_t) + \log p(s_{t+1} | s_t, a_t)] = \nabla \left[\sum_{t=1}^T \pi(a_t | s_t)\right]$$
  
Ending point

max. log likelihood (measuring how likely the trajectory  $\tau$  is following the current policy; similar to KL divergence)

$$S_{i,t}\right)\left(\sum_{t=1}^{T}r(s_{i,t},a_{i,t})\right)$$

**Cumulative reward** 

### The REINFORCE algorithm

#### ... is a Monte-Carlo Policy-Gradient method

#### REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization  $\pi(a|s, \theta)$ Initialize policy parameter  $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ Repeat forever:

Generate an episode  $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ , following  $\pi(\cdot | \cdot, \boldsymbol{\theta})$ For each step of the episode  $t = 0, \ldots, T - 1$ :  $G \leftarrow$  return from step t

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla_{\boldsymbol{\theta}} \ln \pi(A_t | S_t, \boldsymbol{\theta})$ 

The policy is updated **after** each episode. Good policy can be learned from a large sample of episodes.

<u>Williams, R. J. (1992)</u>; Sutton & Barto (2017)



### **REINFORCE** with Baseline

Monte-Carlo based approaches typically suffer from high variance The REINFORCE algorithm is no exception, because the policy is updated by taking random samples.

$$\theta_{t+1} = \theta_t + \alpha G_t \nabla \log_{\pi} \left( a_t | s_t, \theta \right)$$

Common practice: **normalise** the return (i.e., **whitening**)

$$G_t^* = \frac{G_t - \bar{G}}{\sigma_G}$$

$$\theta_{t+1} = \theta_t + \alpha G_t^* \nabla \log_\pi \left( a_t \,|\, s_t, \theta \right)$$

Total reward per episode  $G_0$ 

$$\theta_{t+1} = \theta_t + \alpha [G_t - b(s_t)] \nabla \log_{\pi} (a_t | s_t,$$





### **Actor-Critic Methods**

If we are learning a **policy**, why not learn a **value** function **simultaneously**? Can we use the value function to **guide** the update of the policy? If so, we can update our policy **per-step** instead of **per-episode**.





## Parallel Policy Updating



### **Asynchronous Actor-Critic Agents (A3C)**

Algorithm 1 Asynchronous one-step Q-learning - pseudocode for each actor-learner thread.

// Assume global shared  $\theta$ ,  $\theta^-$ , and counter T = 0. Initialize thread step counter  $t \leftarrow 0$ Initialize target network weights  $\theta^- \leftarrow \theta$ Initialize network gradients  $d\theta \leftarrow 0$ Get initial state s

#### repeat

Take action a with  $\epsilon$ -greedy policy based on  $Q(s, a; \theta)$ Receive new state s' and reward r $\begin{array}{ll}r & \quad \text{for terminal } s' \\ r + \gamma \max_{a'} Q(s', a'; \theta^-) & \quad \text{for non-terminal } s' \end{array}$  $y = \langle$ Accumulate gradients wrt  $\theta$ :  $d\theta \leftarrow d\theta + \frac{\partial (y - Q(s,a;\theta))^2}{\partial \theta}$ s = s' $T \leftarrow T + 1$  and  $t \leftarrow t + 1$ if  $T \mod I_{target} == 0$  then Update the target network  $\theta^- \leftarrow \theta$ end if if  $t \mod I_{AsyncUpdate} == 0$  or s is terminal then Perform asynchronous update of  $\theta$  using  $d\theta$ . Clear gradients  $d\theta \leftarrow 0$ . end if until  $T > T_{max}$ 

Mnih et al. (2016); Medium (Emergent // Future)





### Model-based & Model-free Policy

#### **Example: Work-home commute**

**Task:** Find the best way to go home Friday afternoon **Objective:** Avoid traffic jams / minimise travel time

#### **Solution 1: Model-based**

- Based on prior experience, build a map
- Mark roads with traffic jams at the rush hours
- Avoid them by finding alternative routing strategies

#### **Solution 2: Model-free**

- Based on prior experience, build a list of action sequences  $[(s_{11}, a_{11}), (s_{12}, a_{12}), \dots, (s_{1t}, a_{1t}) \rightarrow ]$  $R_1$  $[(s_{21}, a_{21}), (s_{22}, a_{22}), \dots, (s_{2t}, a_{2t}) \rightarrow$  $R_2$ ]  $[(s_{n1}, a_{n1}), (s_{n2}, a_{n2}), \dots, (s_{nt}, a_{nt}) \rightarrow$  $R_n$ ]
- Find the sequence that minimise the traffic jam or travel time  $\bullet$



### What if the action space is continuous?

There are infinitely amount of actions...

### Gaussian Policy Parameterisation for Continuous Actions

Instead of outputting a specific action, outputting a **distribution** of actions. But how? Parameterisation.

Common practice: use the Gaussian PDF

$$g(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

**Parameterise**  $\mu$  and  $\sigma$  so that they are state-dependent:

$$\pi(a \mid s, \theta) = \frac{1}{\sigma(s, \theta)\sqrt{2\pi}} \exp\left(-\frac{[a - \mu(s, \theta)]^2}{2\sigma(s, \theta)^2}\right)$$
$$\mu : \mathcal{S} \times \mathbb{R}^{d'} \to \mathbb{R}$$
$$\sigma : \mathcal{S} \times \mathbb{R}^{d'} \to \mathbb{R}^+$$
$$\theta = [\theta_{\mu}, \theta_{\sigma}]^{\mathrm{T}}$$





### **Deterministic Policy Gradient**

#### Challenges of using PG to deal with continuous action spaces:

- The policy  $\pi_{\theta}(a \mid s) = \mathbb{P}[a \mid s; \theta]$  is **stochastic**, because it is dealing with a **continuous** action space.
- It can be **expensive** to derive the **gradients** because it samples both s and a, which typically requires more samples. Any cheaper solution? • Furthermore, the actor-critic policy gradient is **on-policy**, which results in **unstable** learning.  $\mathbb{E}_{s \sim \rho_{\pi}, a \sim \pi_{\theta}} \left[ r(s, a) \right] = \mathbb{E}_{s \sim \rho_{\pi}, a \sim \pi_{\theta}} \left[ r(s, \mu_{\theta}(s)) \right]$

$$J(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \pi_{\theta}(s, a) r(s, a) dads =$$

Let's say that we are only interested in the **best action**, and hence **deterministic**:

- $a = \mu_{\theta}(s)$
- which can be considered as a **special case** of the stochastic policy policy  $\pi_{\mu_{\alpha},\sigma}$  with  $\sigma = 0$ .

Silver et al. (2014); Lil'Log



### **Deterministic Policy Gradients**

#### **Notations:**

 $Q^{\pi}(s, a)$ : the value of (s, a) pair when policy  $\pi$  is followed:  $Q^{\pi}(s, a) = \mathbb{E}_{a \sim \pi}[G_t | S_t = s, A_t = a]$  $\rho_0(s)$ : initial distribution over states;  $\rho^{\mu}(s')$ : discounted state distribution:  $\rho^{\mu}(s') = \int_{-\infty}^{\infty} \sum_{k=1}^{\infty} \gamma^{k-1} \rho_0(s) \rho^{\mu}(s \to s', k) ds$ 

Objective function: 
$$J(\theta) = \int_{\mathcal{S}} \rho^{\mu}(s) Q(s, \mu_{\theta}(s))$$
  
 $\nabla_{\theta} J(\theta) = \int_{\mathcal{S}} \rho^{\mu}(s) \nabla_{a} Q(s)$   
 $= \mathbb{E}_{s \sim \rho^{\mu}} [\nabla_{a} Q^{\mu}(s)]$ 

First Q w.r.t. a to choose the best action.

- $\rho^{\mu}(s \rightarrow s', k)$ : starting from state s, the visitation probability density at state s' after following k steps under policy  $\mu$ .

()) ds. Taking the derivative on both side:

 $2^{\mu}(s,a) \nabla_{\theta} \mu_{\theta}(s) \Big|_{a=\mu_{\theta}(s)} ds$ 

 $(s,a)|_{a=\mu_{\theta}(s)} \nabla_{\theta} \mu_{\theta}(s)]$ 

Then use the best action to optimise the deterministic policy

 $\mu$  w.r.t.  $\theta$ 





## Putting Everything Together: DDPG

### Replay buffer + DQN + Actor-Critic + policy gradient + policy parameterisation = DDPG

#### Algorithm 1 DDPG algorithm

Randomly initialize critic network  $Q(s, a | \theta^Q)$  and actor  $\mu(s | \theta^\mu)$  with weights  $\theta^Q$  and  $\theta^\mu$ . Initialize target network Q' and  $\mu'$  with weights  $\theta^{Q'} \leftarrow \theta^Q$ ,  $\theta^{\mu'} \leftarrow \theta^\mu$ Initialize replay buffer Rfor episode = 1, M do Initialize a random process  $\mathcal{N}$  for action exploration Receive initial observation state  $s_1$ for t = 1, T do Select action  $a_t = \mu(s_t | \theta^\mu) + \mathcal{N}_t$  according to the current policy and exploration noise Execute action  $a_t$  and observe reward  $r_t$  and observe new state  $s_{t+1}$ Store transition  $(s_t, a_t, r_t, s_{t+1})$  in RSample a random minibatch of N transitions  $(s_i, a_i, r_i, s_{i+1})$  from RSet  $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1} | \theta^{\mu'}) | \theta^{Q'})$ Update critic by minimizing the loss:  $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i | \theta^Q))^2$ Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q}) |_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s_{i}}$$

Update the target networks:

$$\begin{aligned} \theta^{Q'} &\leftarrow \tau \theta^Q + (1 - \tau) \theta^{Q'} \\ \theta^{\mu'} &\leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'} \end{aligned}$$

end for end for

Lillicrap et al. (2015)



"Standing on the shoulders of giants."



nologianim das das fleuch von melogianim das das fleuch von nier elementen izw fammen ge-macht un er ettera

<text>

Duilosophie Doct hi Linov mair anovu lig tomo qui mini quo en un third cheir Palitings francatur and trie loone abq wilcage vent. Invigilia nue tanun geomera dat mounos fa ullica docta lur-nor all's ta th innomorius pict quita pic pint mai philolophica

Tregszus men achente puche moralue fpracht alles san so it wan an an sum mentlik avgen Dan mon fit it ser hyned wan er nut wegenig unbengant sem obrifesm gen sus dad aft a sie fielle wom er mit somer diolag ficht felle wom er int somer diolag ficht felle benacht int sen onsaftennom flarmit for tre ift auffret, ertouchs dass inte guin martid mit nuter C. and S. ift autoret octourdedazen nik guten marfall unt guten hoffingt frad t-pringet de de zaarmer soldo mett licher fallen pometrend san pett mit fander amflet ingende af silleau guten fractier moon oor handle von det flat Manuel sandnder van gelacht monthe lenge der moel sar werdt lange und laber mark menform genanger ift and wordt

Holps indores via fulloge prices darpe inmentry fors-tracer gigalus pengitin ves nas 1909 equi paudic Q-1 p tanunum rendicito Dogma. ta uno ??



# OpenAI

## Gym

A toolkit for developing and comparing RL algorithms.

#### 🖵 openai / gym

| <> Code | e 🤄 Issues 180 🕄 Pull requests        | 32   Actions   Projects   Wiki   !                        | Security 🗠 Insights                |                                                                                 |
|---------|---------------------------------------|-----------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------|
|         | 양 master → 양 100 branches ♡ 3         | 8 tags Go to file                                         | Add file - Code -                  | About                                                                           |
|         | justinkterry Miscellaneous Toy Text f | ixes (#2082) × c4d0af3                                    | 28 days ago 🕓 <b>1,237</b> commits | A toolkit for developing and<br>comparing reinforcement learning<br>algorithms. |
|         | .github add stale bot config          |                                                           |                                    | al gym openai com/                                                              |
|         | 📄 bin                                 | fix mujoco-related build failure                          | 2 years ago                        |                                                                                 |
|         | docs                                  | updated Gridworld: A simple 2D grid environment (#2073    | ) 2 months ago                     |                                                                                 |
|         | examples                              | Clean some docstrings (#1854)                             | 8 months ago                       | ▲La View license                                                                |
|         | <b>gym</b>                            | Miscellaneous Toy Text fixes (#2082)                      | 28 days ago                        | Delegence                                                                       |
|         | scripts                               | remove six andfuture imports (#1840)                      | 8 months ago                       | Releases 38                                                                     |
|         | tests                                 | Respect the order of keys in a Dict's observation space w | hen flatteni 12 months ago         | on May 29, 2019                                                                 |
|         | endor vendor                          | Switch to Docker for tests (#285)                         | 4 years ago                        | + 37 releases                                                                   |
|         | .dockerignore                         | Switch to Docker for tests (#285)                         | 4 years ago                        |                                                                                 |
|         | .gitignore                            | Fix autodetect dtype warnings (#1234)                     | 2 years ago                        | Packages                                                                        |
|         | 🗅 .travis.yml                         | Remove Python 3.5 support, travis and setup.py mainten    | ance (#2084) last month            | No packages published                                                           |
|         | CODE_OF_CONDUCT.rst                   | Initial release. Hello world :).                          | 5 years ago                        |                                                                                 |
|         | CONTRIBUTING.md                       | CONTRIBUTING.md (#1969)                                   | 6 months ago                       | Used by 15.6k                                                                   |
|         | LICENSE.md                            | Update Docs: HTTP -> HTTPS (#813)                         | 3 years ago                        | <b>* 15,597</b>                                                                 |
|         | README.rst                            | 0.17.3 release and notes                                  | 2 months ago                       |                                                                                 |
|         | py.Dockerfile                         | Remove Python 3.5 support, travis and setup.py mainten    | ance (#2084) last month            | Contributors 261                                                                |
|         | 🗅 setup.py                            | Remove Python 3.5 support, travis and setup.py mainten    | ance (#2084) last month            | an — 🙆 🙈 🚳 🧔                                                                    |

https://github.com/openai/gym







| 99 bill a / atable baselines |                                |                                        |                  |  |  |
|------------------------------|--------------------------------|----------------------------------------|------------------|--|--|
| ہ<br>fo                      | ਡ <mark>n</mark> ii<br>orked f | I-a / STADIE-DASEIINES                 |                  |  |  |
|                              |                                |                                        |                  |  |  |
|                              | <> c                           | ode 🕛 Issues 116 🎲 Pull re             | quests 11        |  |  |
| Ī                            |                                |                                        |                  |  |  |
|                              | ų                              | master 👻 🧚 5 branches 🛛 🕤 24 tag       | gs               |  |  |
|                              | Thi                            | s branch is 708 commits ahead, 221 com | mits behind ope  |  |  |
|                              |                                |                                        |                  |  |  |
|                              | Ü                              | mily20001 and araffin Make EvalCal     | lback work for r |  |  |
|                              |                                | .github                                | Fix `check_env   |  |  |
|                              |                                | data                                   | added tensorb    |  |  |
|                              |                                | docs                                   | Make EvalCallb   |  |  |
|                              |                                | scripts                                | Update docum     |  |  |
|                              |                                | stable_baselines                       | Make EvalCallb   |  |  |
|                              |                                | tests                                  | Make EvalCallb   |  |  |
|                              | Ľ                              | .coveragerc                            | Fixes (GAIL, A2  |  |  |
|                              | Ð                              | .dockerignore                          | Type check wit   |  |  |
|                              | ß                              | .gitignore                             | Refactor Tests   |  |  |

.readthedocs.yml

🗋 .travis.yml

### Stable **Baselines**

|                                                              | ⊙ Watch 👻         | 71 ☆ Star 2.7k 양 Fork                                                               |
|--------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------|
| uests 11 🕑 Actions 🛄 Projects 1 🔲 Wiki 🕕 Se                  | curity 🗠 Insights |                                                                                     |
| Go to file Add file -                                        | ⊻ Code -          | About                                                                               |
| mits behind openai:master. ፤ጎ Pull requ                      | iest 主 Compare    | A fork of OpenAl Baselines,<br>implementations of reinforcem<br>learning algorithms |
| back work for recurrent policies (#1017) 🗸 b3f414f on Oct 12 | 834 commits       | Stable-baselines.readthedocs                                                        |
| Fix `check_env`, `Monitor.close` and add Makefile (#673)     | 10 months ago     | reinforcement-learning-algorithms reinforcement-learning                            |
| added tensorboard to A2C                                     | 2 years ago       | machine-learning gym open                                                           |
| Make EvalCallback work for recurrent policies (#1017)        | 2 months ago      | baselines toolbox python                                                            |
| Update documentation (#848)                                  | 7 months ago      | data-science                                                                        |
| Make EvalCallback work for recurrent policies (#1017)        | 2 months ago      | 🛱 Readme                                                                            |
| Make EvalCallback work for recurrent policies (#1017)        | 2 months ago      | が MIT License                                                                       |
| Fixes (GAIL, A2C and BC) + Add Pretraining (#206)            | 2 years ago       |                                                                                     |
| Type check with pytype (#565)                                | 13 months ago     | Releases 24                                                                         |
| Refactor Tests + Add Helpers (#508)                          | 13 months ago     | Bug fixes release Latest<br>on Aug 5                                                |
| Update documentation (#848)                                  | 7 months ago      | + 23 releases                                                                       |
| Release 2.10.0 (#737)                                        | 9 months ago      |                                                                                     |

https://github.com/hill-a/stable-baselines









| Algorithm     | Frameworks | Discrete Actions | Continuous<br>Actions | Multi-<br>Agent | Model Support                                     |
|---------------|------------|------------------|-----------------------|-----------------|---------------------------------------------------|
| A2C, A3C      | tf + torch | Yes +parametric  | Yes                   | Yes             | +RNN, +LSTM auto-wrapping, +Transformer, +autoreg |
| ARS           | tf + torch | Yes              | Yes                   | No              |                                                   |
| BC            | tf + torch | Yes +parametric  | Yes                   | Yes             | +RNN                                              |
| ES            | tf + torch | Yes              | Yes                   | No              |                                                   |
| DDPG, TD3     | tf + torch | No               | Yes                   | Yes             |                                                   |
| APEX-DDPG     | tf + torch | No               | Yes                   | Yes             |                                                   |
| Dreamer       | torch      | No               | Yes                   | No              | +RNN                                              |
| DQN, Rainbow  | tf + torch | Yes +parametric  | No                    | Yes             |                                                   |
| APEX-DQN      | tf + torch | Yes +parametric  | No                    | Yes             |                                                   |
| IMPALA        | tf + torch | Yes +parametric  | Yes                   | Yes             | +RNN, +LSTM auto-wrapping, +Transformer, +autoreg |
| MAML          | tf + torch | No               | Yes                   | No              |                                                   |
| MARWIL        | tf + torch | Yes +parametric  | Yes                   | Yes             | +RNN                                              |
| MBMPO         | torch      | No               | Yes                   | No              |                                                   |
| PG            | tf + torch | Yes +parametric  | Yes                   | Yes             | +RNN, +LSTM auto-wrapping, +Transformer, +autoreg |
| PPO, APPO     | tf + torch | Yes +parametric  | Yes                   | Yes             | +RNN, +LSTM auto-wrapping, +Transformer, +autoreg |
| SAC           | tf + torch | Yes              | Yes                   | Yes             |                                                   |
| LinUCB, LinTS | torch      | Yes +parametric  | No                    | Yes             |                                                   |
| AlphaZero     | torch      | Yes +parametric  | No                    | No              | https://docs.ray.io/en/master/rllib.html          |



# Cockpit 747 Boeing



## Take Home Messages

### **Reinforcement learning**

- ... is the area of machine learning that deals with sequential decision-making;
- ... is a task that optimises the behaviour of the agent when interacting with a given environment; ... aims to find a **balance** between **exploration** and **exploitation**;
- ... models the environment as a Markov decision process;
- ... stores the experience in lookup tables (Q-tables) or as policies.



### **Q-learning**

- ... uses value functions to measure the value of an action a given state s;  $r_t$  ... stores the values in a lookup table Q(s, a);
  - ... infers/approximates the optimal policy  $\pi^*$  according to Q(s, a);
  - ... is a model-free, deterministic algorithm.

### **Policy gradients**

- ... directly optimise the **policy** by sampling (instead of evaluating) the value of a trajectory; ... model desirable actions by learning a probability distribution;
- ... are applicable to a wider range of problem and generally cheaper to train (comparing to Q-learning);
- ... sometimes difficult to reach convergence.



### **Reading Materials**

### If you are interested to learn more:

https://pathmind.com/wiki/deep-reinforcement-learning https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12 https://www.davidsilver.uk/teaching/ https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html https://github.com/dennybritz/reinforcement-learning

### Reinforcement Learning

An Introduction second edition

Richard S. Sutton and Andrew G. Barto

#### Sutton & Barto (2015)

