
Introduction to
Deep Learning

Maxwell Cai

1

maxwellcai.com

Reinforcement Learning

http://maxwellcai.com

Categories of machine learning

UnsupervisedSupervised Reinforcement

Learn from the labels Detect patterns in the data Learn from mistakes

2

From Brute Force to AI
IBM’s Deep Blue

Think about AlphaGo Zero

Are recurrent neural networks (RNNs) useful in this kind of applications?
• Utilise information in the past steps (RNNs can probably help)

• Make decision for the near future (RNNs can probably help)

• Make sequences of decisions for the far future that maximise gains (RNNs can’t help)

• Deal with an infinitely large solution space (RNN can’t help)4

Reinforcement Learning
… is an area of machine learning that deals with sequential decision-making.

… is a task of learning how agents ought to take sequences of actions in an environment in order
to maximise cumulative rewards.

… learns a good behaviour through its experience.

… forms a balance between the exploration/exploitation dilemma

Bellman (1957); François-Lavet et al. (2018), arXiv:1811.12560

State

Action

Observation

st ∈ 𝒮

at ∈ 𝒜

ωt ∈ Ω

5

Agent & Environment

RL agent learns to balance a cart pole

Image source / movie source 7

https://jsteinhardt.wordpress.com/2010/06/26/the-underwater-cartpole/
https://www.youtube.com/watch?v=5Q14EjnOJZc&feature=emb_logo

How do we formulate the process of sequential
decision making?

Playing Tic-Tac-Toe

9

Strategy to move to the next step:
• Look ahead one step

• Take an action from one of the following strategies:

• Randomly

• Choose the action corresponding to the largest value (greedy)

The Q-learning Algorithm

Image source: Shaked Zychlinski/Medium

The problem is that, we do not know the right strategy (i.e., policy) to take actions a priori …

And sometimes not even the environment is known to us.

We have to explore the environment…

10

The Q-learning Algorithm

Source: Wikipedia

Initial Q-table Updated Q-table

In order to decide the best strategy given the current state and action , we can design a table to
query the future expectation.

st at Q

11

Deep-Q Network (DQN)
Mnih et al. (2013); Image: Ankit Choudhary

The Q-table can quickly become too large.

How about replacing it with a neural network?

https://arxiv.org/abs/1312.5602

Markov Decision Process

Brownian motion has Markov property (memoryless). Image source: Wikipedia

The evolution of the environment is usually modelled as a Markov Decision Process (MDP).

13

Trajectories of an MDP

Image source: Shaked Zychlinski/Medium

In MDP, different trajectories may lead to different cumulative rewards, but the
objective is to optimise from the current state onwards.

14

Core Problem
… is to maximise the cumulative reward in an episode.

Greedy: π*(s) = arg max
a

Q(s, a)

Qπ(s, a) = 𝔼[
∞

∑
t=0

γtrt |st = s, at = a, π]

Take action into account:

Bellman’s Equation Qπ(s, a) = r(s, a) + γ max
a′

Q(s′ , a′)

Vπ(s) = Rt = 𝔼[rt+1 + γrt+2 + γ2rt+3 . . .] = 𝔼[
∞

∑
t=0

γtrt |st = s, π]

Episodical Value Function

Advantage function: 
(the advantage of taking action in state)a s

Aπ(s, a) = Qπ(s, a) − Vπ(s)

15

How does an agent explore the environment?

Dynamic Programming
If the underlying environment is known a priori, we could potentially solve the problem using DP.

“Those who cannot remember the past are condemned to repeat it.” — Dynamic Programming

Cannot solve a big problem?

• The big problem can be defined as a smaller problem,

plus a trivial step.

• If the smaller problem can be solved optimally, then

the original problem can be solved;

• If the small problem is still too big, recursively break it

into even smaller ones, until directly solvable.

• If an optimal solution is found, store the solution so

that the bigger problem can be solved based on it.

In DP, the environment is known, no need to explore.
Directly find the optimal solution.

17

F(0) = a
F(n + 1) = f(F(n))

Playing StarCraft with DP?
No-no.

18

Monte-Carlo Search

V(St) ← V(St) + α[Gt − V(St)]

- Play a bunch of games; record the experience.

- Collect the rewards at the end of the episode and calculate

the maximum expected reward.

If the environment is unknown, we will have to explore it by
interacting with it in many different ways. The more ways

we try, the more clear we understand the environment.

19

Temporal Difference Learning

Final reward

Reward for next time step

V(St) ← V(St) + α[Gt − V(St)]Monte Carlo

V(St) ← V(St) + α[Rt+1 + γV(St+1) − V(St)]TD

Requires a complete episode

Learns from an incomplete episode through bootstrapping

20

Sometimes, it is too expensive or even impossible to finish a full episode.

Comparison of Value-based methods

Image source: David Silver21

Environment known Environment unknown 
Exploration cheap

Environment unknown 
Exploration expensive

Optimal substructure Sample a few complete trajectories Sample a few steps

22

Exploration vs. Exploitation

23

The exploration-exploitation dilemma
Through initial exploration, we obtain a policy (not necessarily optimal), which is at least better than naive
guesses. Should we use this existing sub-optimal policy to solve the problem (some rewards guaranteed), or keep
exploring until we get an even better policy that leads to better results (not guaranteed)?

-armed bandit problemk

Greedy vs. -greedyϵ

24

We likely want to find a tradeoff between exploration and exploitation.

Exploitation
Keep using the current (sub-

optimal) policy

Exploration
Try other options and see if any

luck to get better results

Image source: Microsoft Research

Pros: very simple to implement;

Cons: how do we select a proper ?ϵ

Random
number

generator

p ∼ [0,1] p ≥ ϵ

p < ϵ

Stabilise the Training with Replay Buffer

There are good actions and bad actions.

It is harmful to update the network with bad actions.

SGD requires data to be independent and identically distributed.

Instead of using the latest experience to update the Q-
network, we accumulate the experience in a replay
buffer (aka experience buffer), and update the network
by randomly sampling the replay buffer.

25

Stabilise the Training with a Target Network
Alternatively, we can deter the update of our -network.Q

Intuition: I have an idea of how to play this well, I'm going to try it out for a bit until I find
something better.

26

Playing Atari with a DQN
With a CNN+DQN, an agent accepts high-dimensional
visual inputs and play the Atari 2600 game at a
superhuman level!

Credit: leonardoaraujosantos.gitbook.io; Mnih et al. (2013); DeepMind

http://leonardoaraujosantos.gitbook.io

Then don’t explore it. Try to discover some general guidelines (policy).

What if the problem is too hard/expensive to explore?

Policy-based RL

29

Example: Traveling from Amsterdam to Rotterdam
Constraint: no prior knowledge, no maps/GPS.

Solution 1 (value-based RL):
1. Travel a small distance along all possible directions;

2. Evaluate the distance to Rotterdam.

3. Repeat (1,2) until Rotterdam is reached.

Solution 2 (policy-based RL):
1. Ask someone around

2. The person being asked gives a policy “go southwest

for 80 km”

3. Execute the policy

4. Check if Rotterdam is reached. If not, repeat (1,2,3).

Policy-based RL

Constructing the policy from the value function can sometimes be very expensive. Any shortcut?

Optimise the policy directly (without consulting the value function): policy-based RL

Road sign is a policy

30

Deterministic & Stochastic Policies

a = π(s)
action = policy(state)

Deterministic Policy: state-action mapping

ℙ[At = a |St = s] = π(a |s)
proba(action) = policy(state)

Stochastic Policy: probability distribution of
state-action pairs

Takes uncertainties into account

Rock-paper-scissors

31

Formulation of Policy Gradients
To quickly find the optimal policy, we follow its gradients. But how?

∇J(τ) ≡
∇J(τ)
J(τ)

J(τ) = J(τ)∇log[J(τ)]Recall that

Objective

Take the grad
on both sides

J(τ) = 𝔼[r(t)] = ∫ π(τ)r(τ)dτ

∇J(τ) = ∇∫ π(τ)r(τ)dτ = ∫ ∇π(τ)r(τ)dτ = ∫ π(τ)∇log π(τ)r(τ)dτ = 𝔼[∇log π(τ)r(τ)]

We can calculate the policy grad by sampling trajectories and calculate their expectations!

Probability

π(τ) = π(s1, a1, s2, a2, . . . , st, at) = p(s1)
T

∏
t=1

π(at |st)p(st+1 |st, at)

log π(τ) = log p(s1) +
T

∑
t=1

log π(at |st) + log p(st+1 |st, at)

τ = (s1, a1, s2, a2, . . . , st, at)Trajectory

Probability

Take the log
On both sides

32

∇log π(τ) = ∇[log p(s1) +
T

∑
t=1

log π(at |st) + log p(st+1 |st, at)] = ∇[
T

∑
t=1

π(at |st)]Take the grad

Policy Gradients (cont.)
log π(τ) = log p(s1) +

T

∑
t=1

log π(at |st) + log p(st+1 |st, at)

Starting point Ending point

πθ ← πθ + α∇θJ(θ)Policy update

∇J(τ) = 𝔼[∇log π(τ)r(τ)]Recall that

∇J(τ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇log π(ai,t |si,t)) (
T

∑
t=1

r(si,t, ai,t))Therefore

Gradient ascent!

33

Cumulative reward

max. log likelihood (measuring how likely
the trajectory is following the current
policy; similar to KL divergence)

τ

The REINFORCE algorithm
… is a Monte-Carlo Policy-Gradient method

Williams, R. J. (1992); Sutton & Barto (2017)

The policy is updated after each episode.

Good policy can be learned from a large sample of episodes.

34

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.8871

REINFORCE with Baseline
Monte-Carlo based approaches typically suffer from high variance
The REINFORCE algorithm is no exception, because the policy is updated by taking random samples.

θt+1 = θt + αGt ∇logπ (at |st, θ) θt+1 = θt + α[Gt−b(st)]∇logπ (at |st, θ)
Common practice: normalise the return (i.e., whitening)

G*t =
Gt − Ḡ

σG

θt+1 = θt + αG*t ∇logπ (at |st, θ)

Sutton & Barto (2015)

35

Adding a baseline can make
REINFORCE learn faster.

Actor-Critic Methods
If we are learning a policy, why not learn a value function simultaneously?

Can we use the value function to guide the update of the policy?

If so, we can update our policy per-step instead of per-episode.

36

Parallel Policy Updating

Mnih et al. (2016); Medium (Emergent // Future)

Asynchronous Actor-Critic Agents (A3C)

37

https://arxiv.org/pdf/1602.01783.pdf
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

Model-based & Model-free Policy

Image: Dayan & Niv (2008)

Example: Work-home commute
Task: Find the best way to go home Friday afternoon

Objective: Avoid traffic jams / minimise travel time

Solution 1: Model-based
• Based on prior experience, build a map

• Mark roads with traffic jams at the rush hours

• Avoid them by finding alternative routing strategies

Solution 2: Model-free
• Based on prior experience, build a list of action sequences 

• Find the sequence that minimise the traffic jam or travel time

[(s11, a11), (s12, a12), . . . , (s1t, a1t) → R1]
[(s21, a21), (s22, a22), . . . , (s2t, a2t) → R2]. . .
[(sn1, an1), (sn2, an2), . . . , (snt, ant) → Rn]

38

https://www.princeton.edu/~yael/Publications/DayanNiv2008.pdf

There are infinitely amount of actions…

What if the action space is continuous?

Gaussian Policy Parameterisation for Continuous Actions

g(x) =
1

σ 2π
exp (−

(x − μ)2

2σ2)
Common practice: use the Gaussian PDF

Parameterise and so that they are
state-dependent:

μ σ

π(a |s, θ) =
1

σ(s, θ) 2π
exp (−

[a−μ(s, θ)]2

2σ(s, θ)2)
μ : 𝒮 × ℝd′ → ℝ

σ : 𝒮 × ℝd′ → ℝ+

θ = [θμ, θσ]𝕋

40

Gaussian PDF

Instead of outputting a specific action, outputting a distribution of actions.

But how? Parameterisation.

Deterministic Policy Gradient

• The policy is stochastic, because it is dealing with a continuous action
space.

• It can be expensive to derive the gradients because it samples both and , which typically
requires more samples. Any cheaper solution?

• Furthermore, the actor-critic policy gradient is on-policy, which results in unstable learning.

πθ(a |s) = ℙ[a |s; θ]

s a

Challenges of using PG to deal with continuous action spaces:

41

Let’s say that we are only interested in the best action, and hence deterministic:
a = μθ(s)

which can be considered as a special case of the stochastic policy policy with .πμθ,σ σ = 0

J(πθ) = ∫𝒮
ρπ(s)∫𝒜

πθ(s, a)r(s, a)dads = 𝔼s∼ρπ,a∼πθ [r(s, a)] = 𝔼s∼ρπ,a∼πθ [r(s, μθ(s))]

Silver et al. (2014); Lil’Log

https://hal.inria.fr/file/index/docid/938992/filename/dpg-icml2014.pdf
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Deterministic Policy Gradients

Then use the best action to
optimise the deterministic policy

 w.r.t. μ θ

First w.r.t. to choose the best action.Q a

42

: the value of pair when policy is followed:

: initial distribution over states;

: starting from state , the visitation probability density at state after following steps under policy .

: discounted state distribution:

Qπ(s, a) (s, a) π Qπ(s, a) = 𝔼a∼π[Gt |St = s, At = a]
ρ0(s)
ρμ(s → s′ , k) s s′ k μ

ρμ(s′) ρμ(s′) = ∫𝒮

∞

∑
k=1

γk−1ρ0(s)ρμ(s → s′ , k)ds

Objective function: . Taking the derivative on both side: J(θ) = ∫𝒮
ρμ(s)Q(s, μθ(s))ds

∇θJ(θ) = ∫𝒮
ρμ(s)∇aQμ(s, a)∇θ μθ(s)|a=μθ(s)ds

= 𝔼s∼ρμ[∇aQμ(s, a)|a=μθ(s) ∇θ μθ(s)]

Notations:

Silver et al. (2014); Lil’Log

https://hal.inria.fr/file/index/docid/938992/filename/dpg-icml2014.pdf
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Putting Everything Together: DDPG
Replay buffer + DQN + Actor-Critic + policy gradient + policy parameterisation = DDPG

Lillicrap et al. (2015)

43

“Standing on the shoulders of giants.”

Gym

45 https://github.com/openai/gym

A toolkit for developing and
comparing RL algorithms.

https://github.com/openai/gym

Stable
Baselines

46 https://github.com/hill-a/stable-baselines

https://github.com/hill-a/stable-baselines

RLlib

47 https://docs.ray.io/en/master/rllib.html

https://docs.ray.io/en/master/rllib.html

Our world is complicated. Reinforcement learning, albeit being extremely
promising, still has a long way to go.

Bo
ei

ng
 7

47
 C

oc
kp

it

Take Home Messages

49

Q-learning
… uses value functions to measure the value of an action given state ;

… stores the values in a lookup table ;

… infers/approximates the optimal policy according to ;

… is a model-free, deterministic algorithm.

a s
Q(s, a)

π* Q(s, a)

Reinforcement learning
… is the area of machine learning that deals with sequential decision-making;

… is a task that optimises the behaviour of the agent when interacting with a given environment;

… aims to find a balance between exploration and exploitation;

… models the environment as a Markov decision process;

… stores the experience in lookup tables (Q-tables) or as policies.

Policy gradients
… directly optimise the policy by sampling (instead of evaluating) the value of a trajectory;

… model desirable actions by learning a probability distribution;

… are applicable to a wider range of problem and generally cheaper to train (comparing to Q-learning);

… sometimes difficult to reach convergence.

Reading Materials

50

https://pathmind.com/wiki/deep-reinforcement-learning

https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html

https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12

https://www.davidsilver.uk/teaching/

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

https://github.com/dennybritz/reinforcement-learning

Sutton & Barto (2015)

If you are interested to learn more:

https://pathmind.com/wiki/deep-reinforcement-learning
https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html
https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12
https://www.davidsilver.uk/teaching/
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://github.com/dennybritz/reinforcement-learning
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

