

Introduction to **Deep Learning**

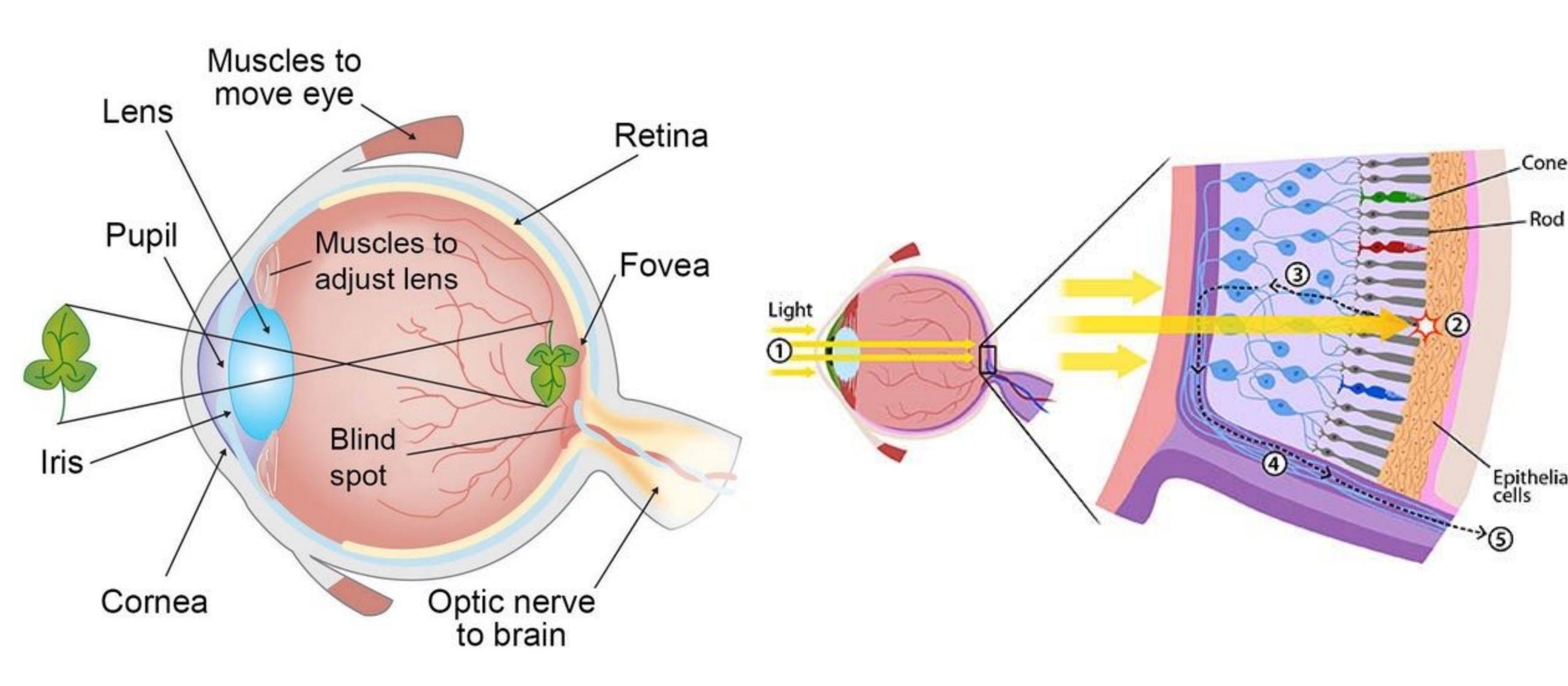
Convolutional Neural Networks

maxwellcai.com

Welcome to the world of computer vision!

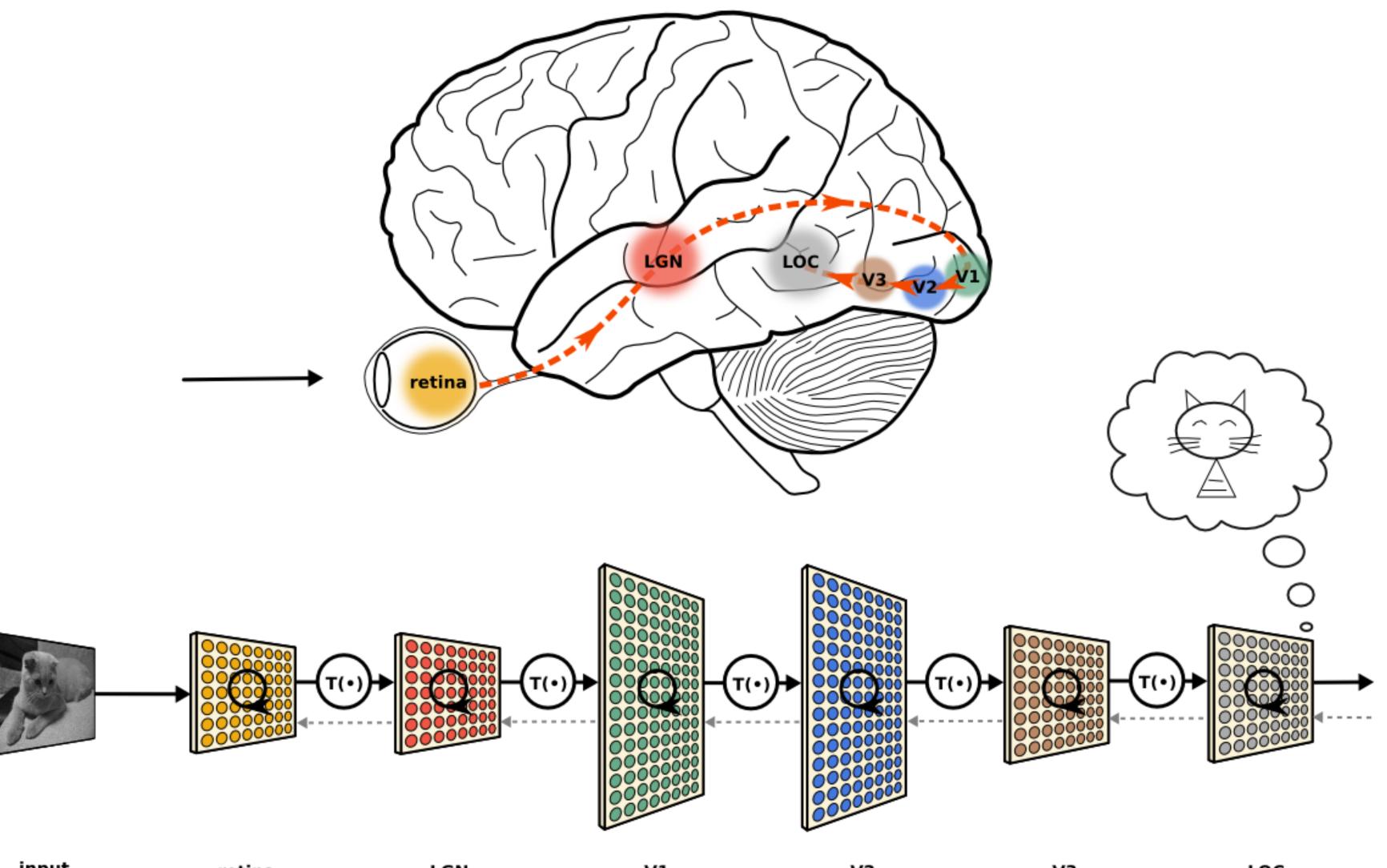
How do we let computers "see" something?

Ask ourselves first: How do we (humans) see something?



Human eyes

Human brain: the (real) neural network



input

retina

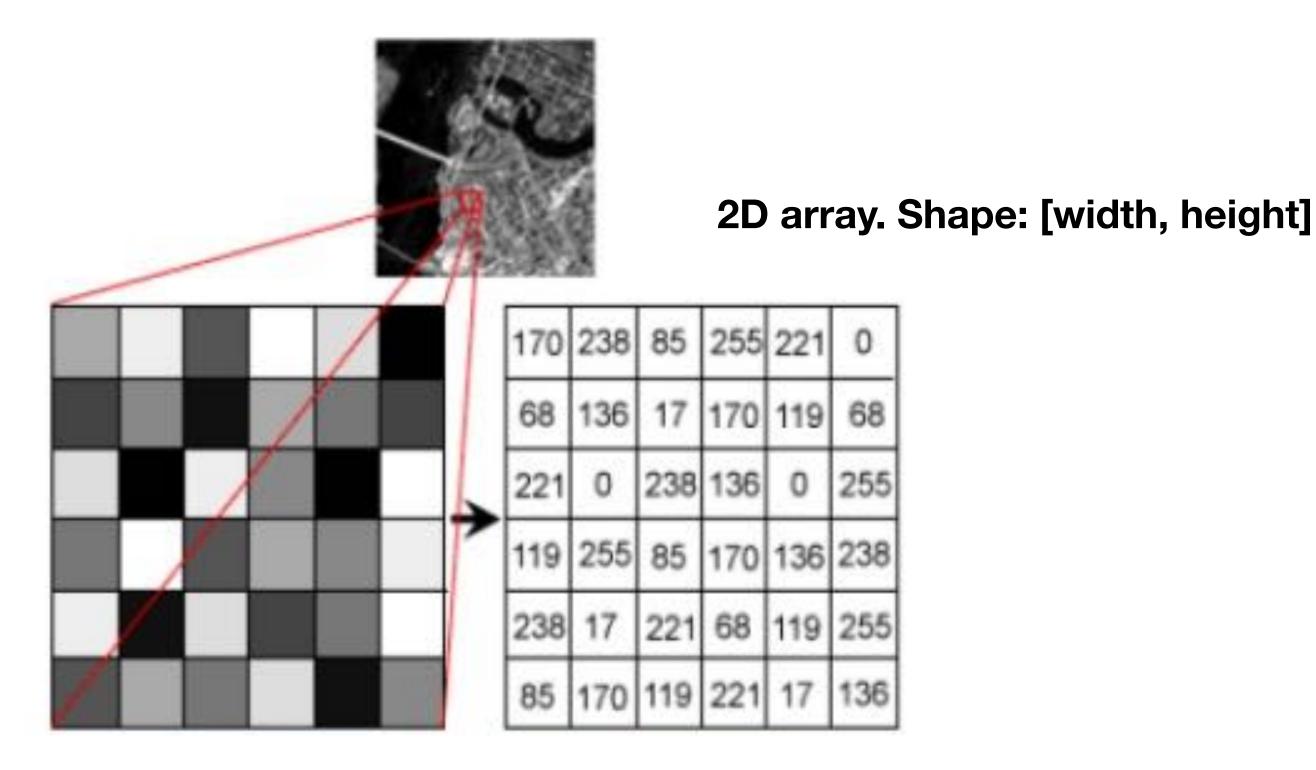
Source: <u>arimaresearch.com</u>

V٦

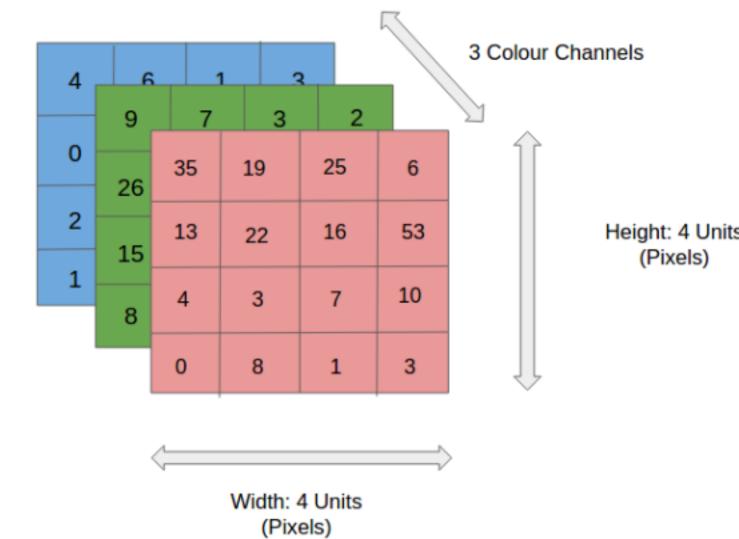
Representation of images in computers

An image

- ... is a matrix/array of intensity values
- ... usually consists integers of [0, 255] or float points of [0, 1]
- ... each element of this matrix is called a **pixel**
- ... can have 1 (greyscale) or multiple (color) channels



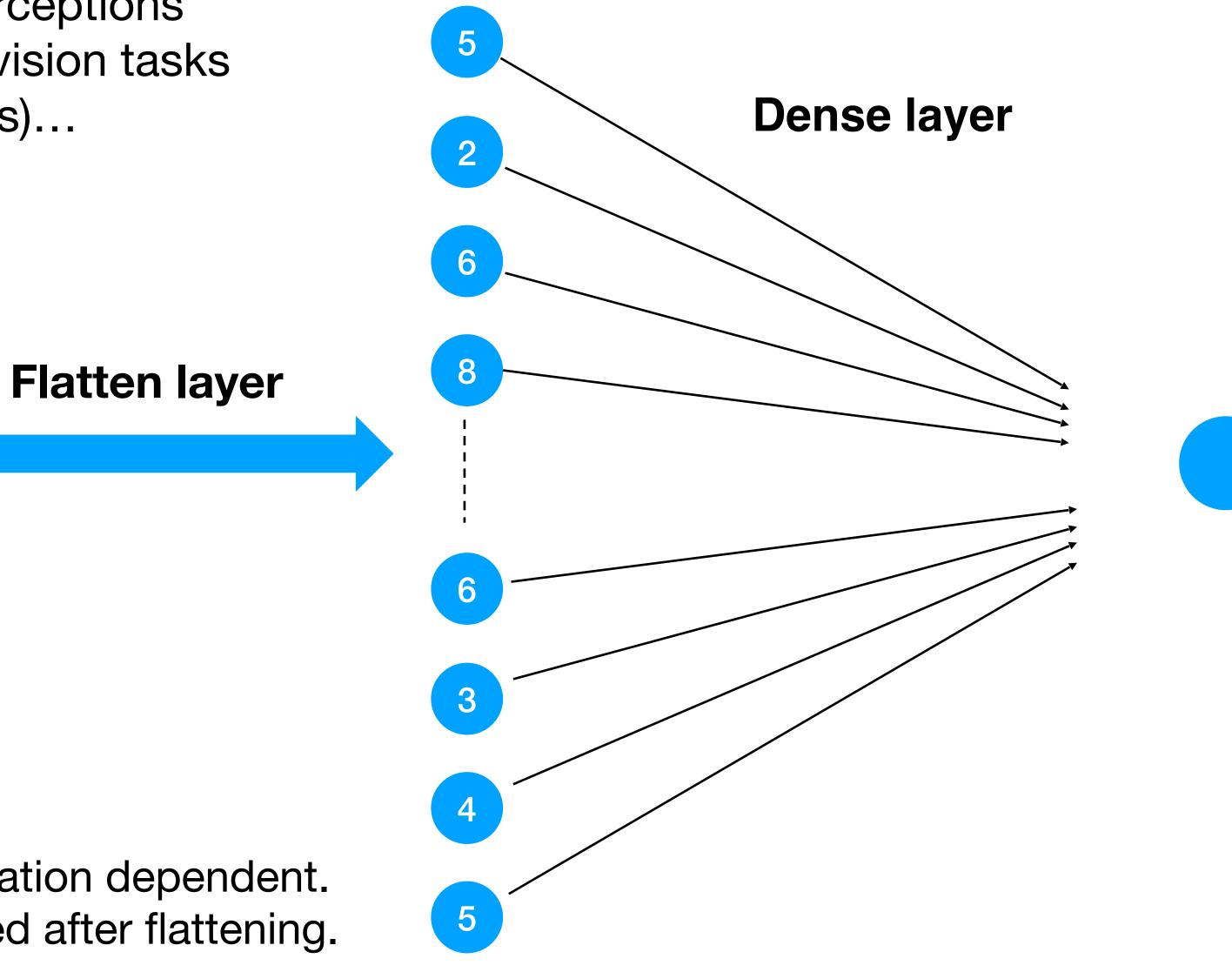
3D array. Shape: [width, height, channel]



Dense network classifier (MLP)

So far, we have used multi-layer perceptions (MLP) to carry out some computer vision tasks (e.g., recognizing hand-written digits)...

5	2	6	8	2	0	1	2
4	3	4	5	1	9	6	3
3	9	2	4	7	7	6	9
1	3	4	6	8	2	2	1
8	4	6	2	3	1	8	8
5	8	9	0	1	0	2	3
9	2	6	6	3	6	2	1
9	8	8	2	6	3	4	5

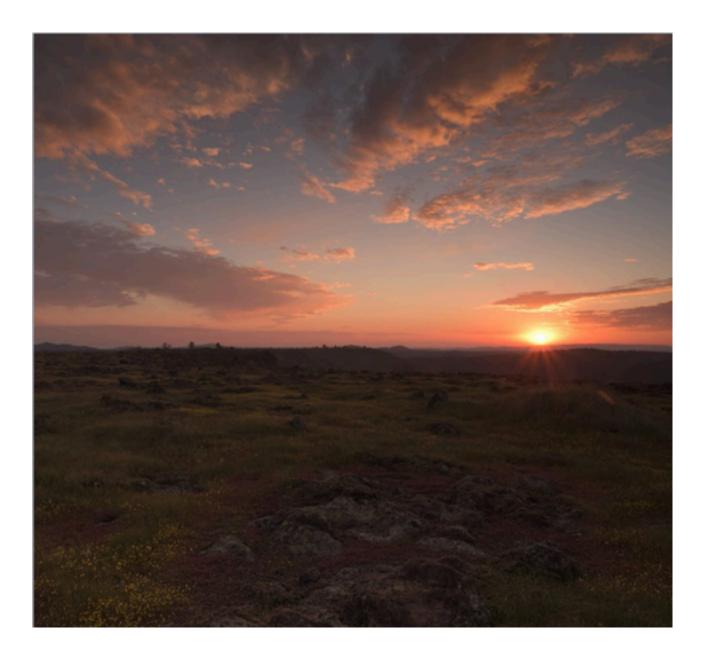


Problem:

- The resulting encoding is pixel location dependent.
- Spatial relationship is not preserved after flattening.

Filters in our daily lives

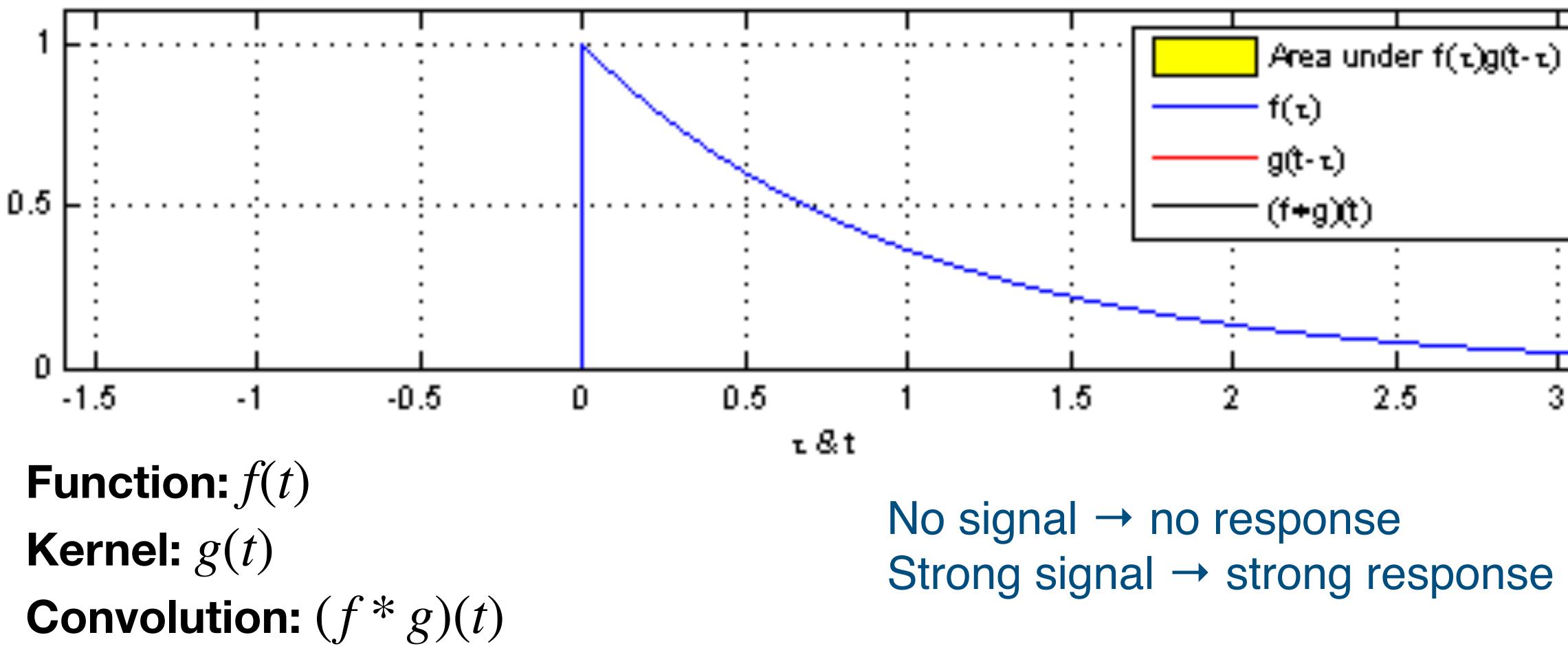
Filter in image processing



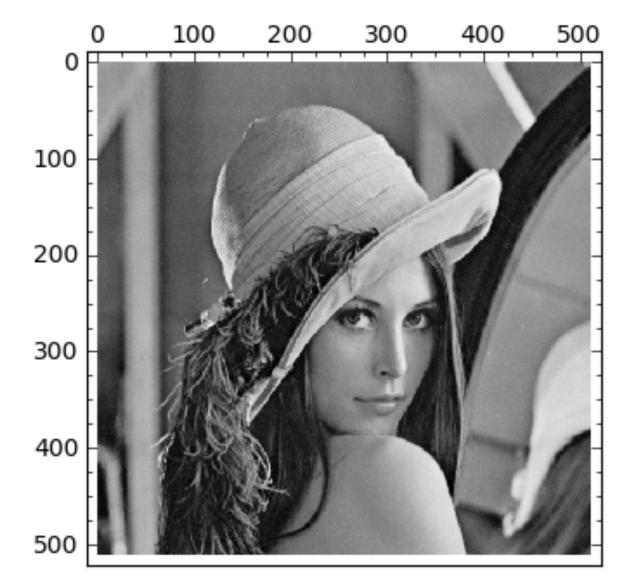
Using different filters, we can see the same signal in different perspectives.

Convolution

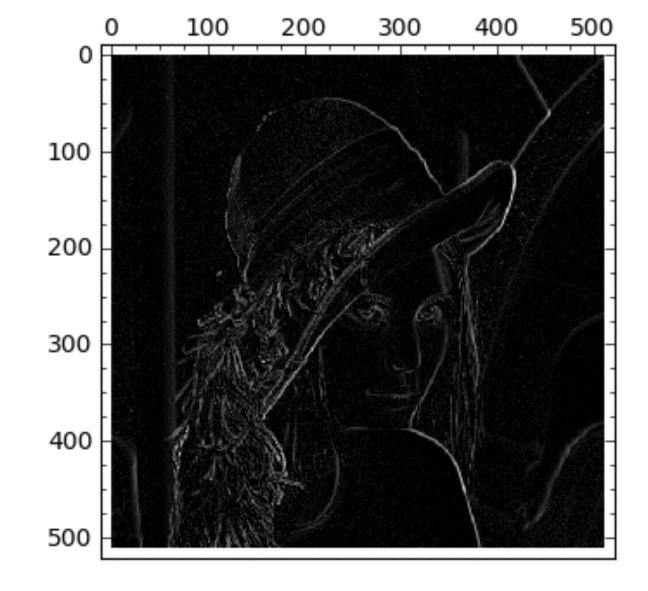
Typically, a filter applies a **convolution** operation upon the original signal.



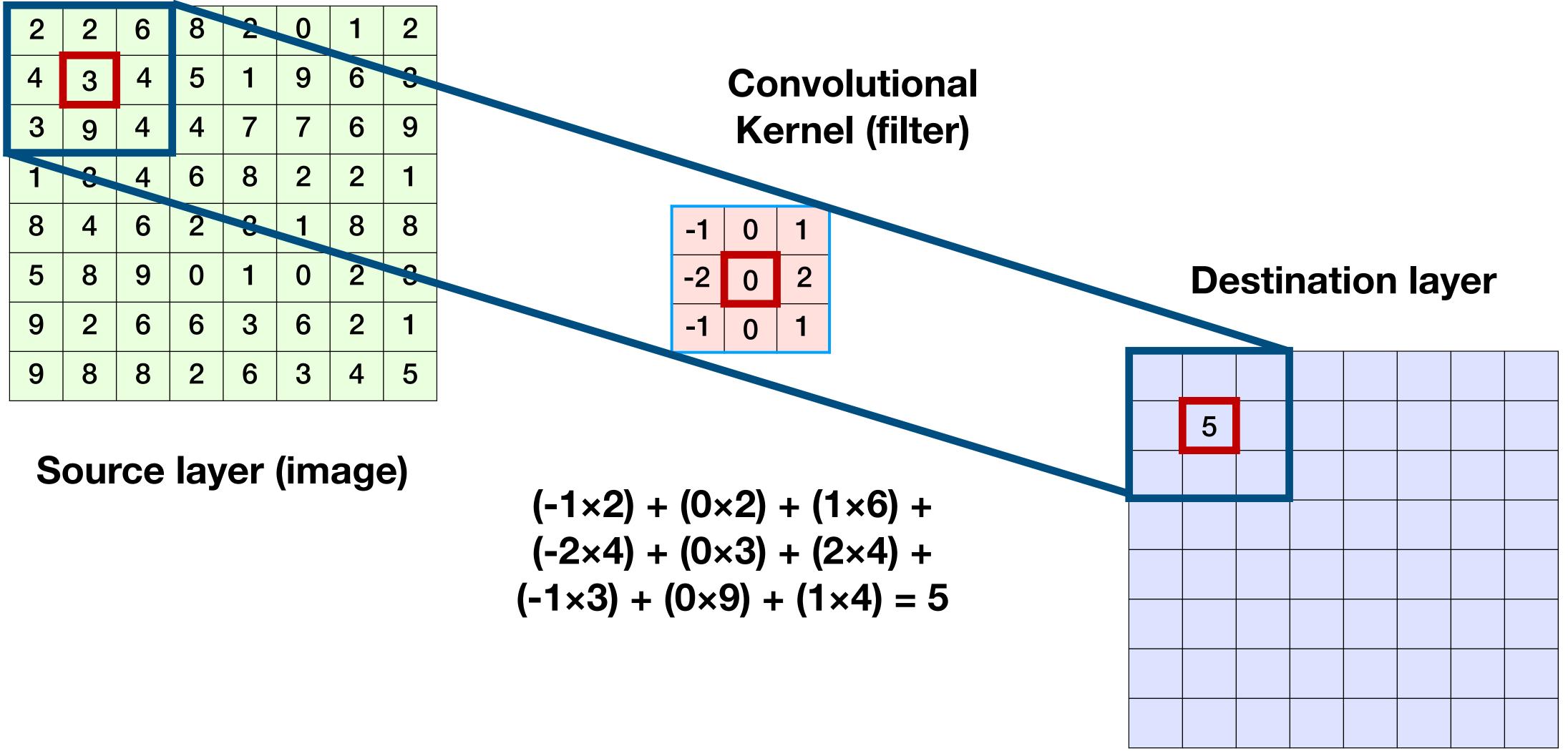
Filtering: a signal processing technique



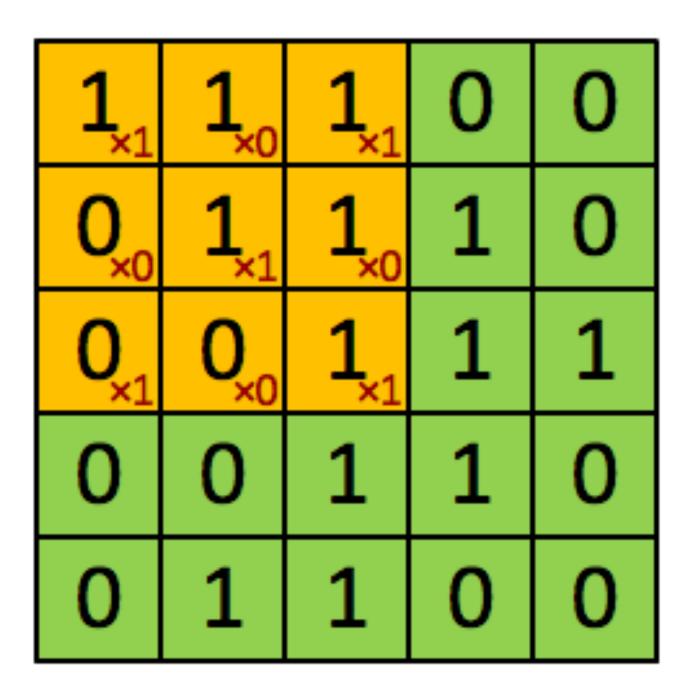
Convolution

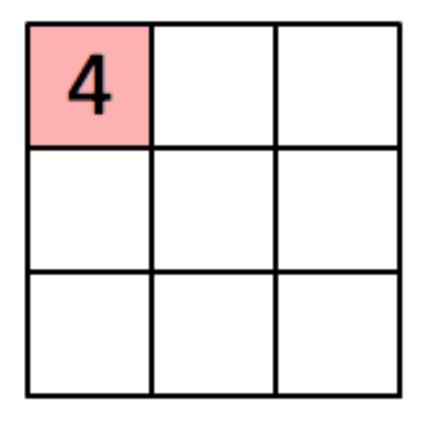


Convolution



Convolution





Image

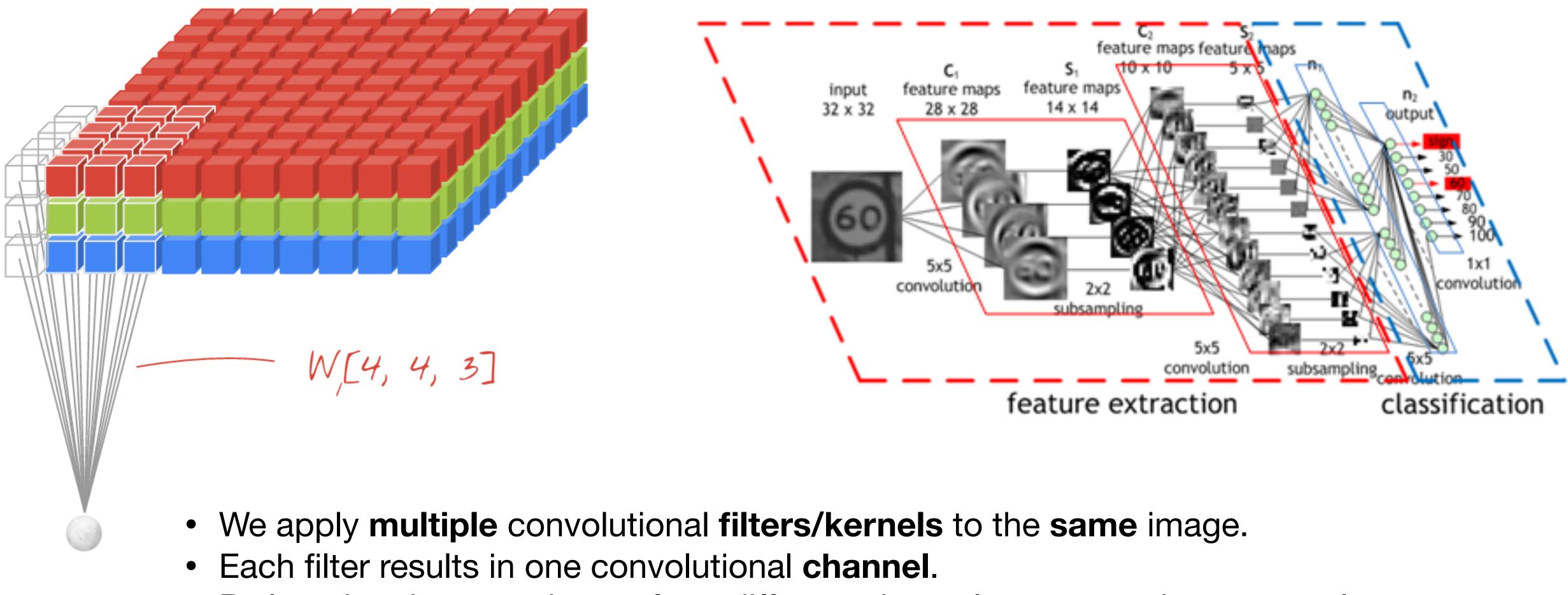
Convolved Feature

Animation: Sumit Saha/Towards Data Science

- The kernel is **shifted** over the image with a step size, and computes the output for each position.
- The step size is called **stride**.
- Output has **smaller** dimension than input: dim(output) = dim(input) - (dim(kernel) - 1)
- Padding is used to solve this problem, which artificially make the image "bigger" by adding synthesis data (typically 0-padding)



Multiple convolutional channels



Animation: Martin Görner

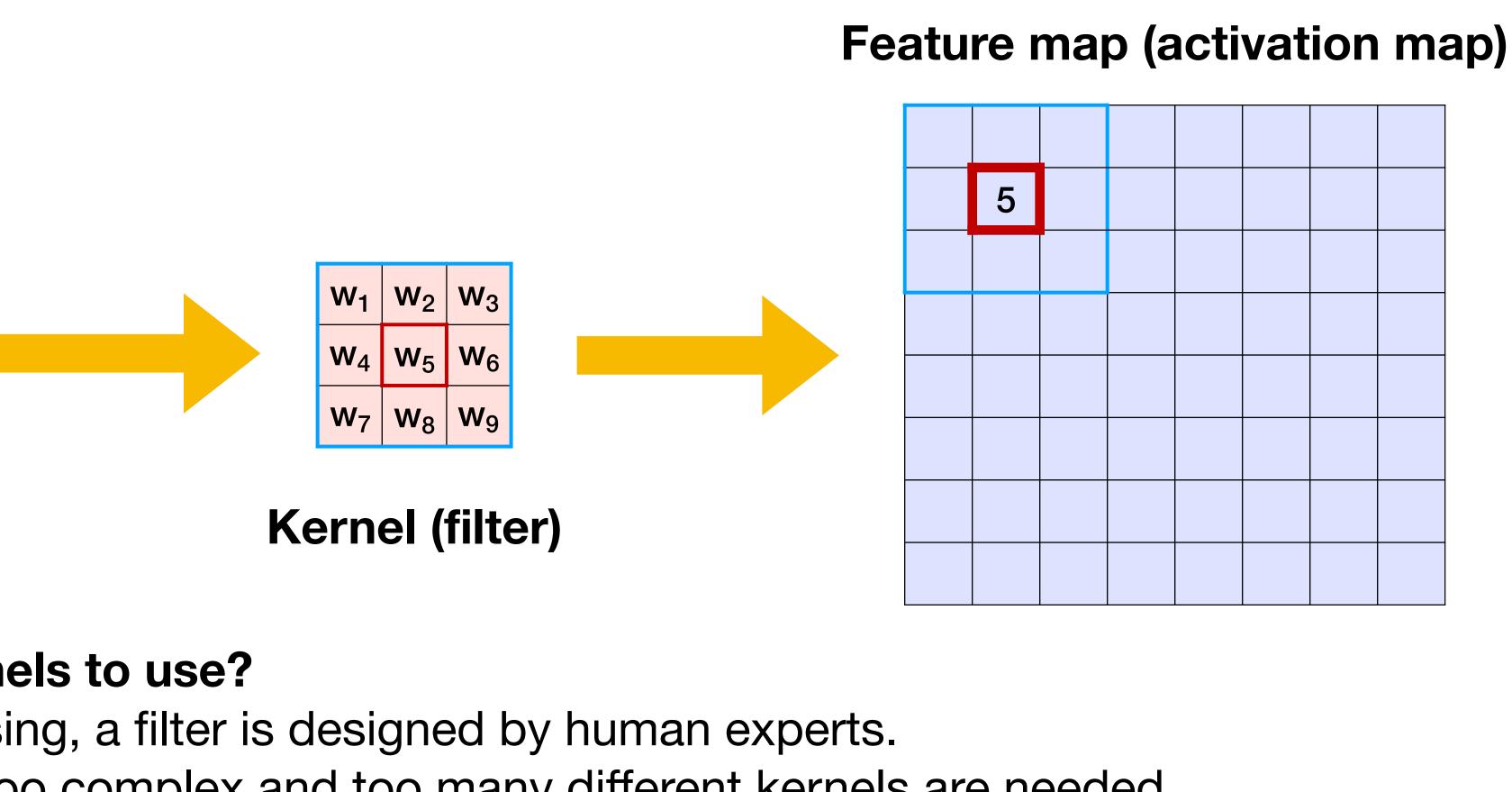
• By learning the same image from different channels, one can detect complex patterns.

Image: Maurice Peemen

Automatic Kernel Determination

Source layer (image)

2	2	6	8	2	0	1	2
4	3	4	5	1	9	6	3
3	9	4	4	7	7	6	9
1	3	4	6	8	2	2	1
8	4	6	2	3	1	8	8
5	8	9	0	1	0	2	3
9	2	6	6	3	6	2	1
9	8	8	2	6	3	4	5

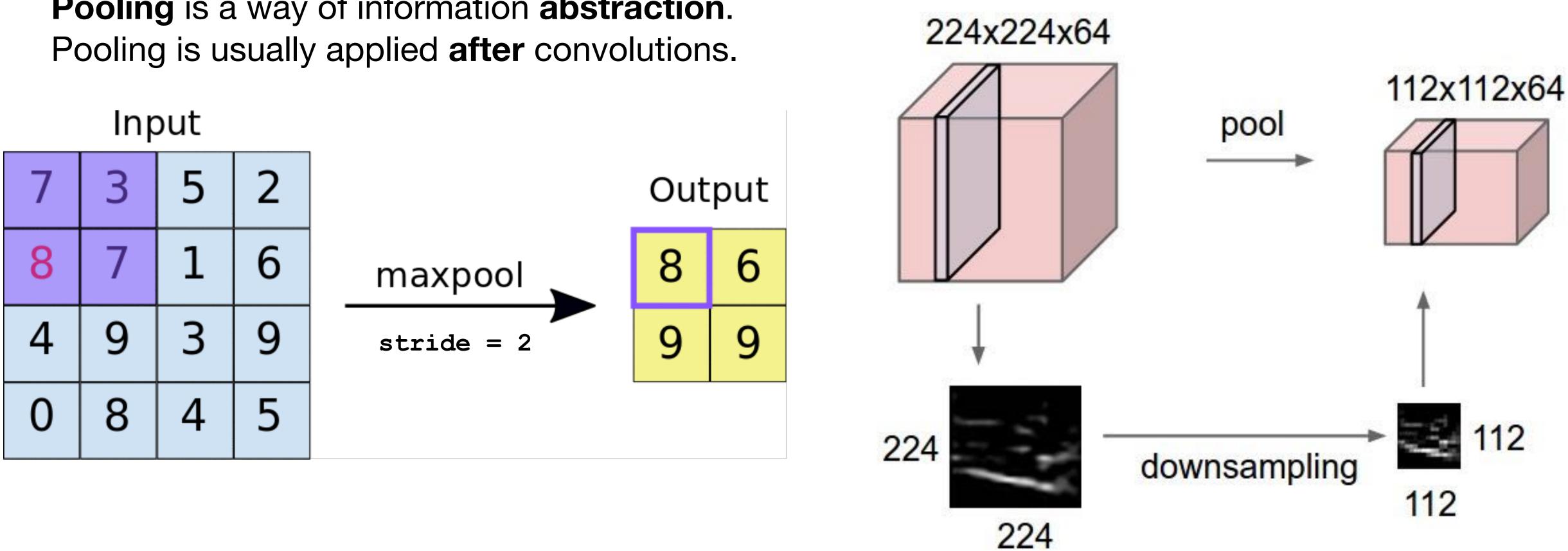


How do we know which kernels to use?

- In traditional signal processing, a filter is designed by human experts.
- In deep learning, data are too complex and too many different kernels are needed.
- Therefore, kernels are no longer fixed. They are initialized randomly.
- Kernels are updated through **backward propagation**, in the way that it **learns** which features to detect.
- Gradient descent algorithms are used.

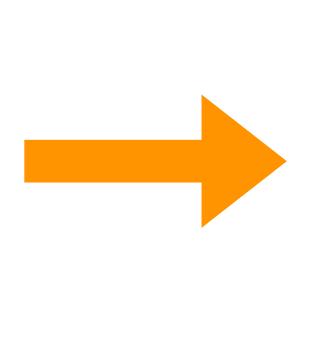
Pooling (downsampling)

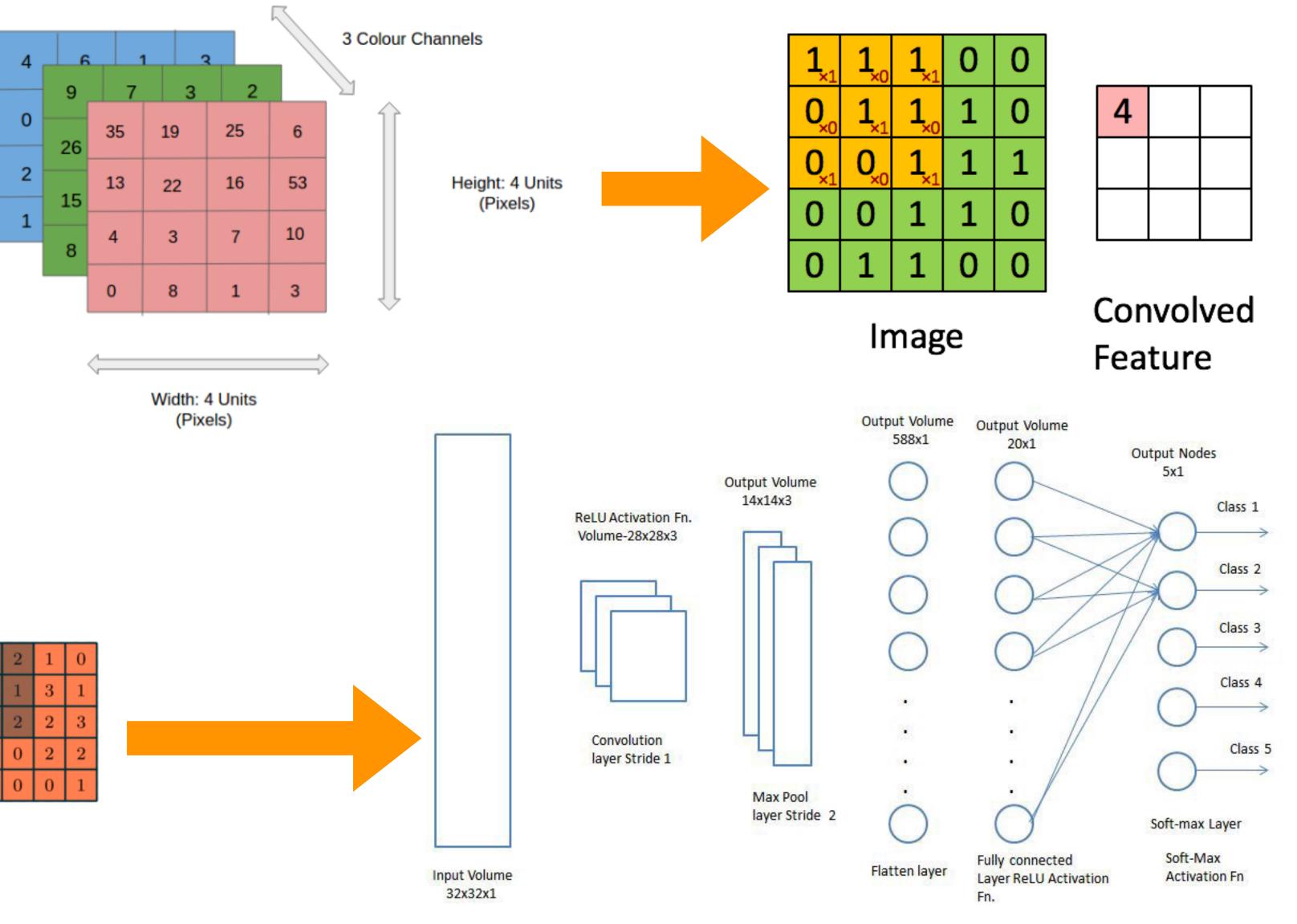
We need to **discard** information **gradually**. **Pooling** is a way of information **abstraction**.



Max pooling: keep the strongest signal Average pooling: use the local average as the signal

CNN Architecture

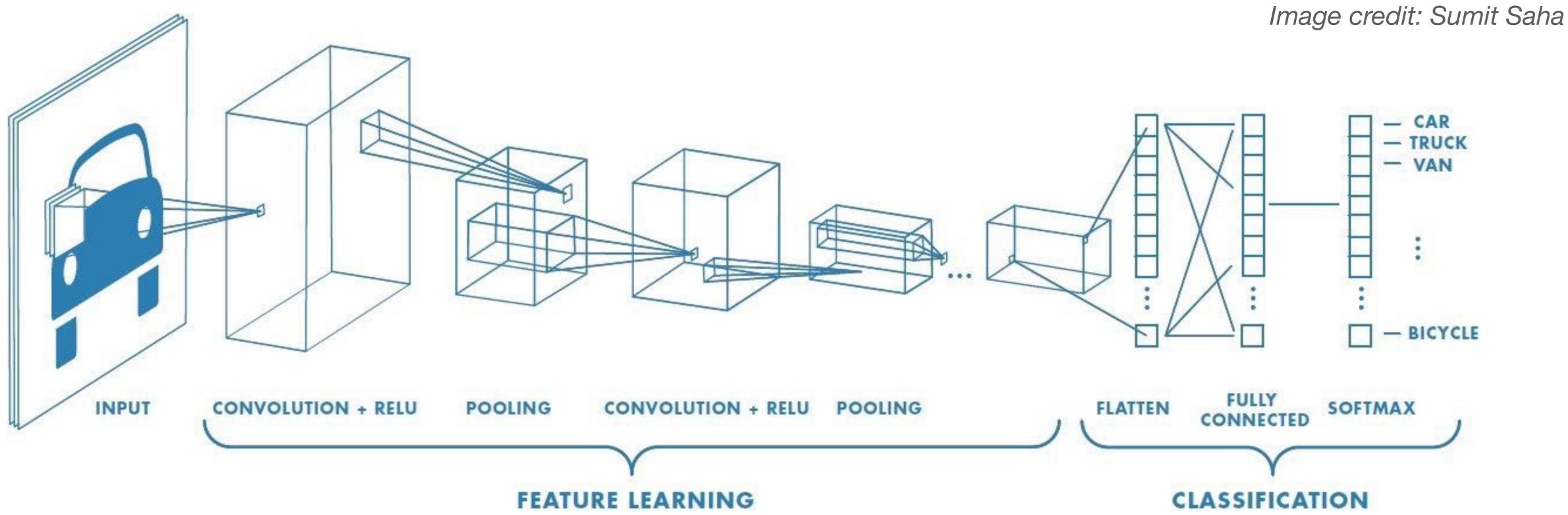




3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

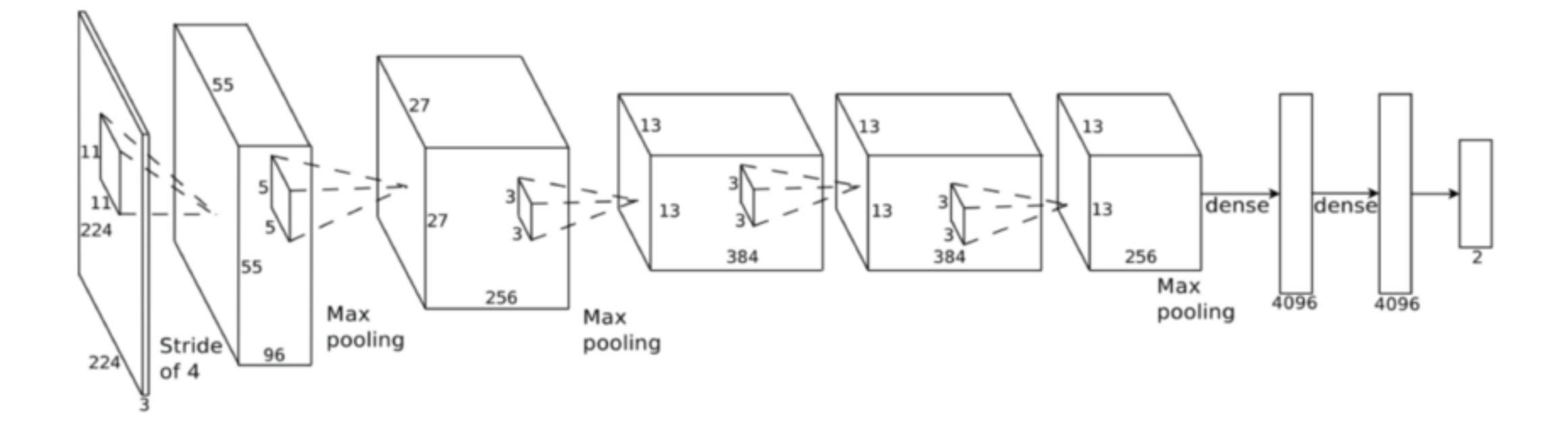
Convolution Neural Network (CNN)



- Typically, **images** become increasingly **smaller** as they go to the **deeper** layers;
- Typically, the number of **filters increases** in the **deeper** layers;
 - Low-level features are limited, thus requires few filters;
 - High-level features are rich, thus requires many filters;
- activation function.

• The decision making (i.e., classification) is made in the last layers, typically with dense layers and the softmax

AlexNet



Krizhevsky et al. 2012 (NIPS). 58k+ citations!

Do we need to go deeper?

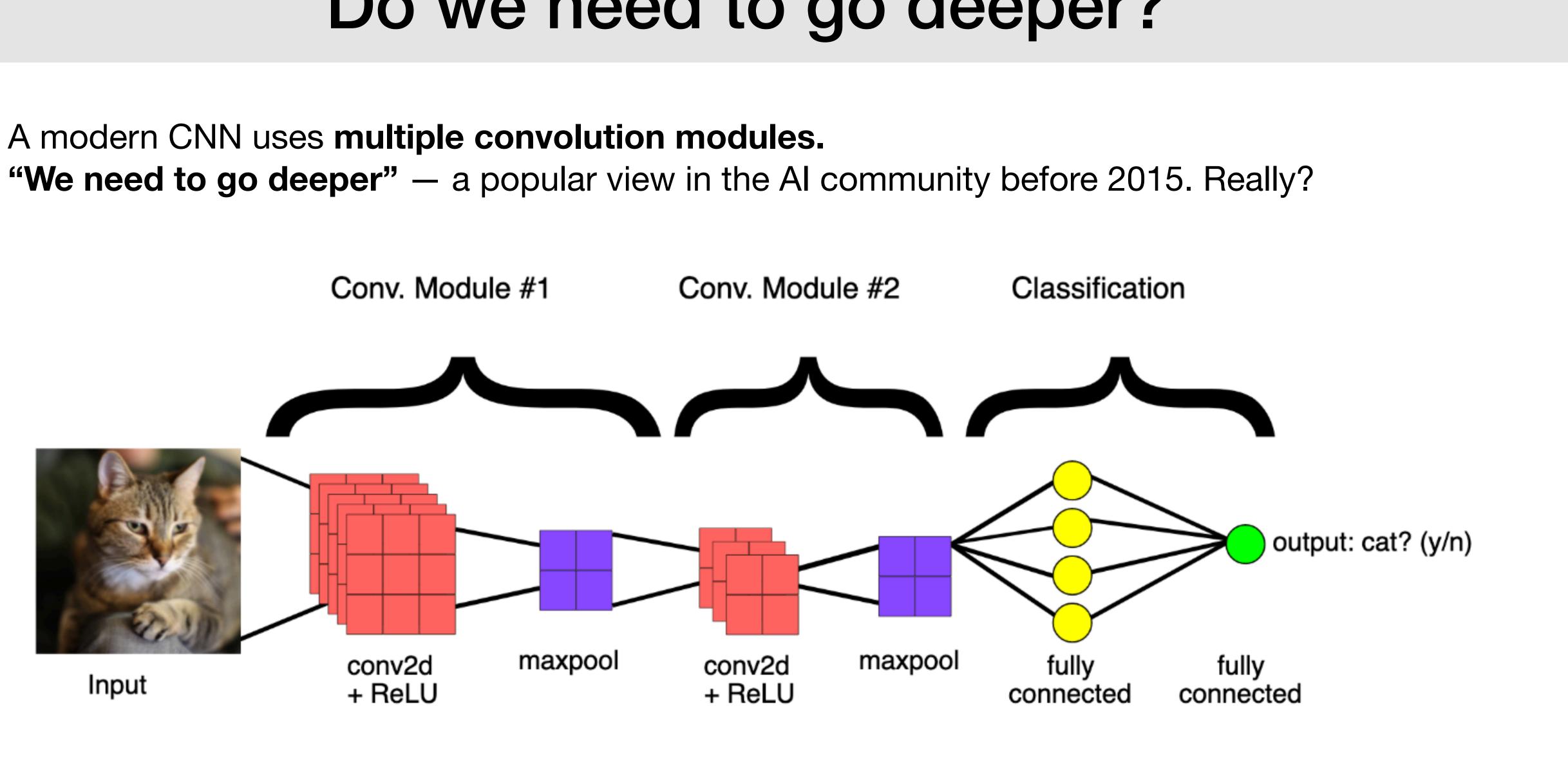


Image credit: Google Developers

Do we need to go deeper?

A modern CNN uses multiple convolution modules. "We need to go deeper" — a popular view in the AI community before 2015. Really?

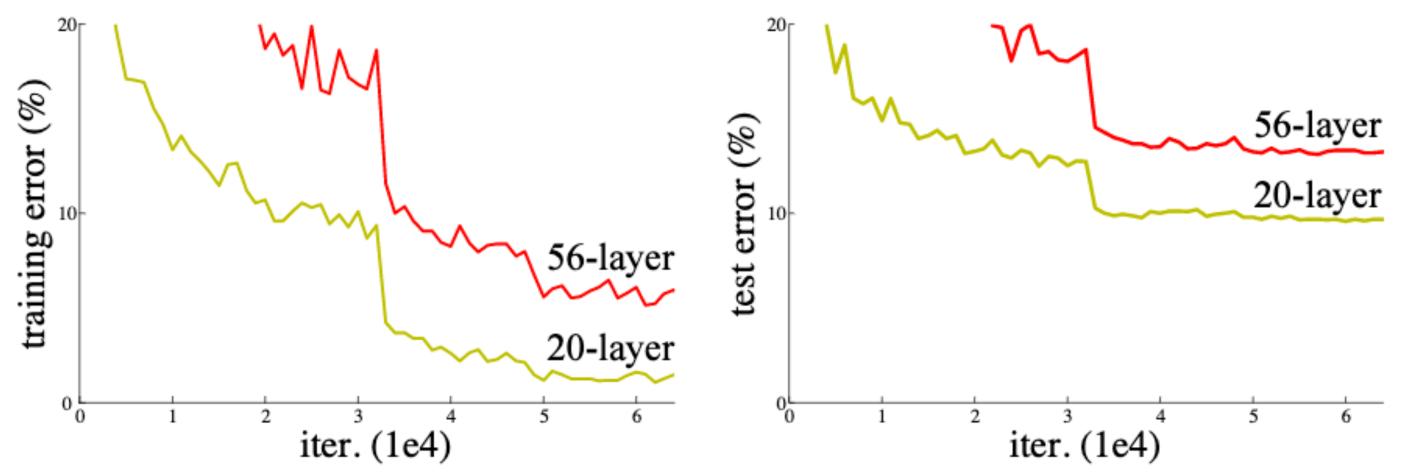


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

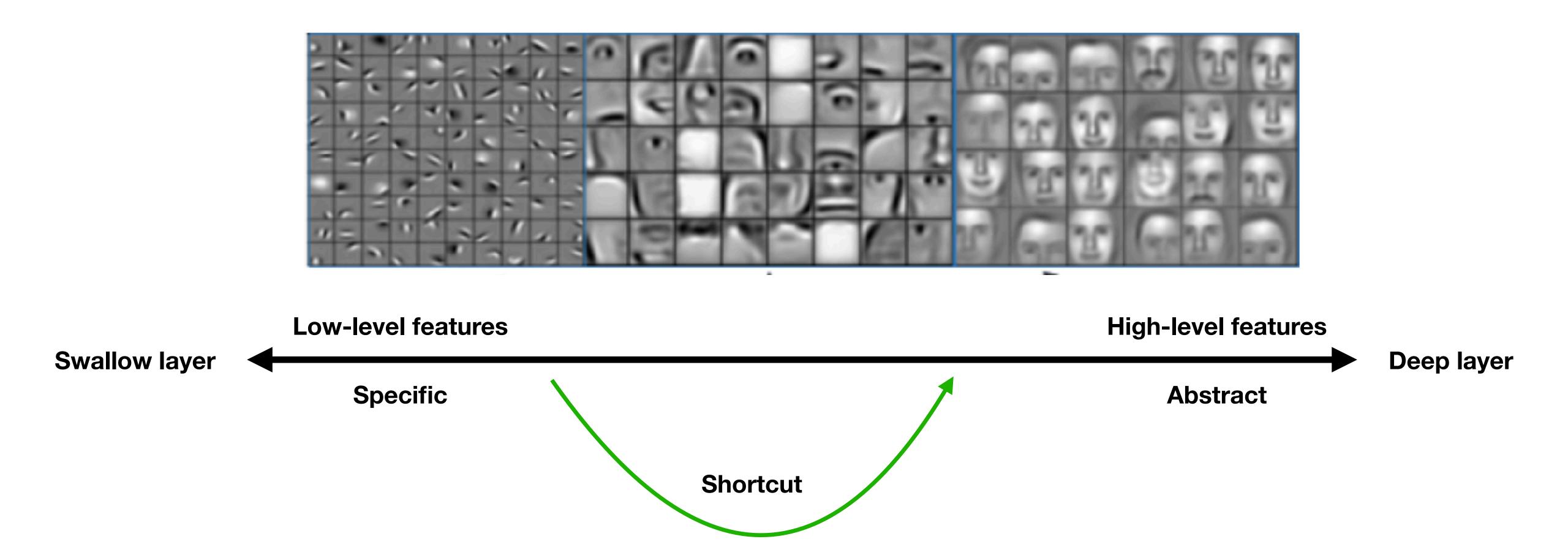
He et al. (2015, <u>arXiv:1512.03385)</u>

Answer: yes and no.

Deeper networks have larger training/testing error, mainly due to the vanishing gradient problem.

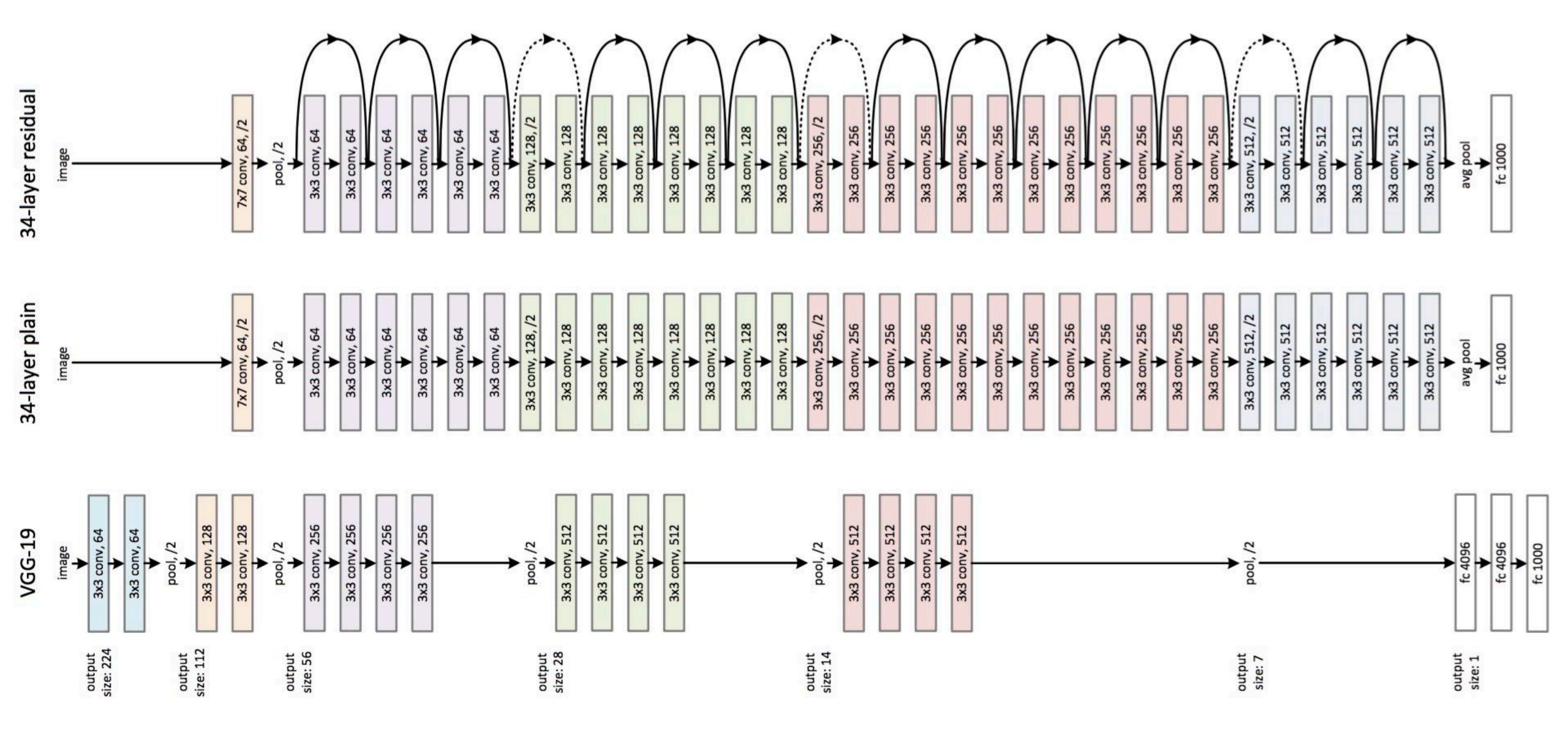
But deeper networks are needed to deal with more complex data.

Residual blocks



How about letting deep layers to have direct access to low-level features?

ResNet

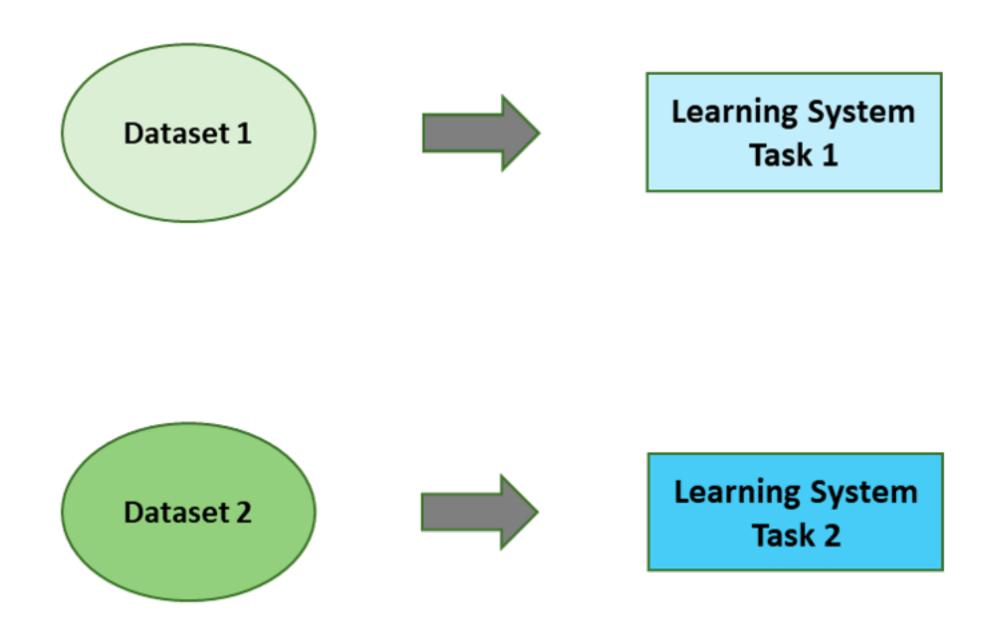


He et al. (2015, arXiv:1512.03385)

Transfer Learning

Recall that the convolutional kernels are **learned** during the training process through backward propagation. The trained kernels contains **knowledge** to detect patterns. Why not let a new CNN to inherit these knowledge?

Traditional ML



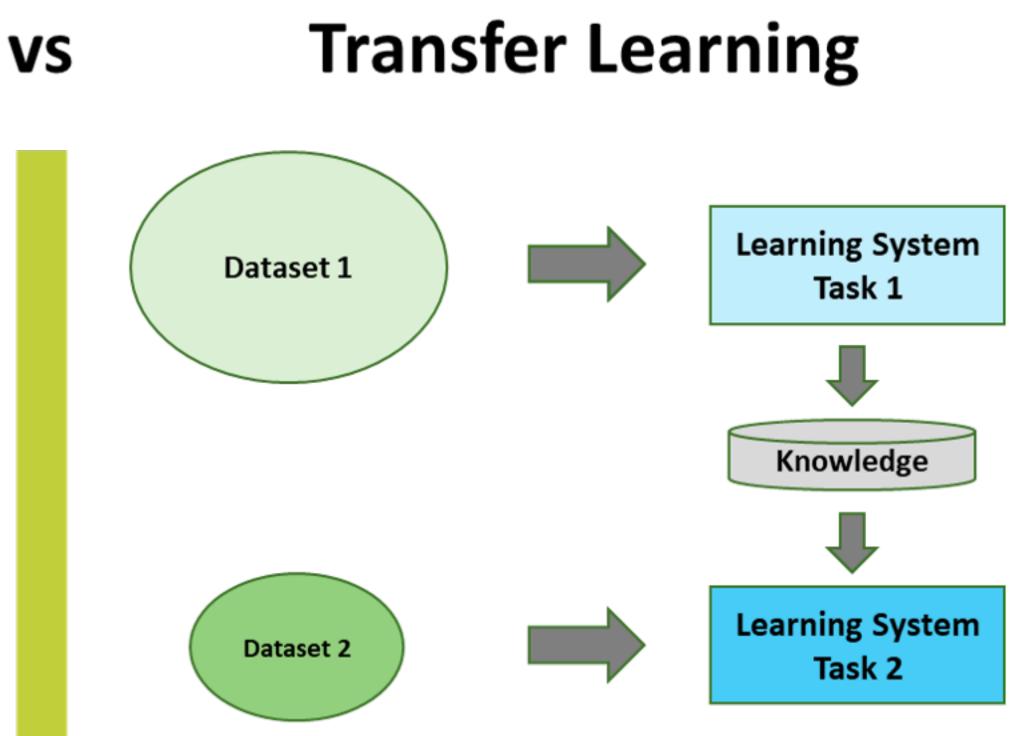


Image source: Dipanjan Sarkar/TowardsDataScience

Transfer Learning

Recall that the convolutional kernels are **learned** during the training process through backward propagation. The trained kernels contains **knowledge** to detect patterns. Why not let a new CNN to inherit these knowledge?

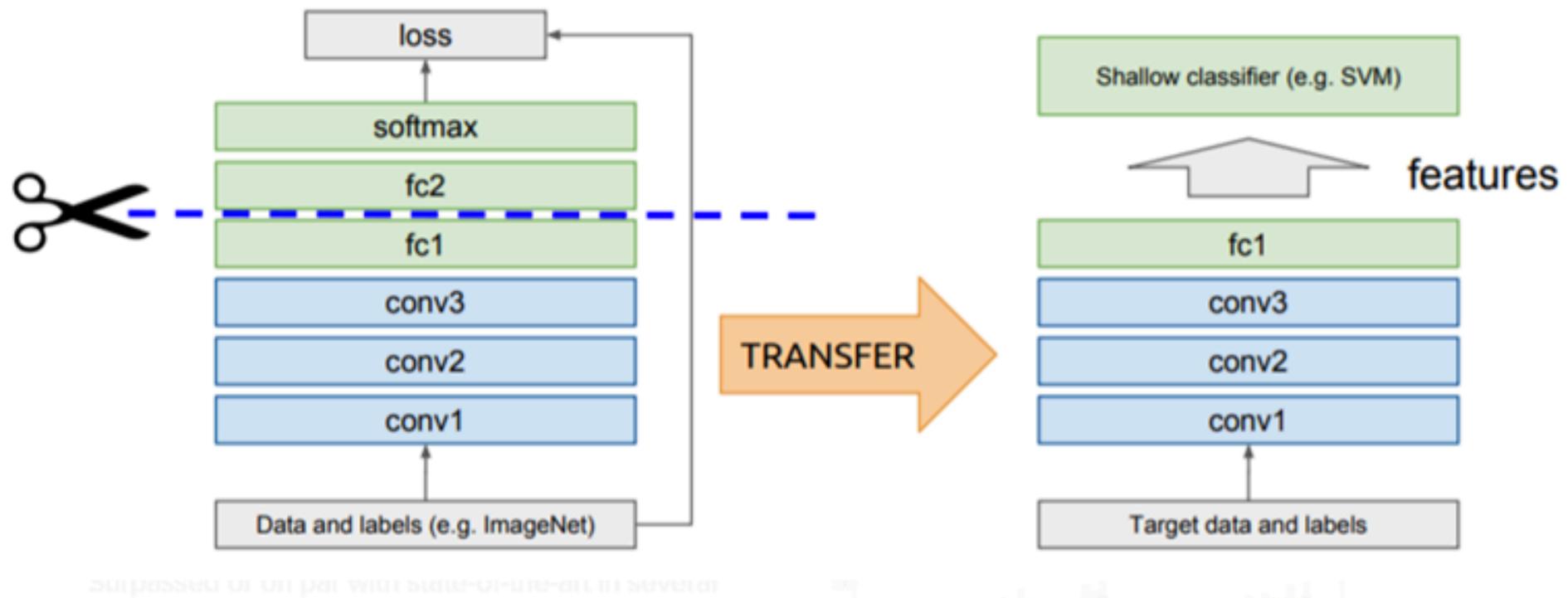
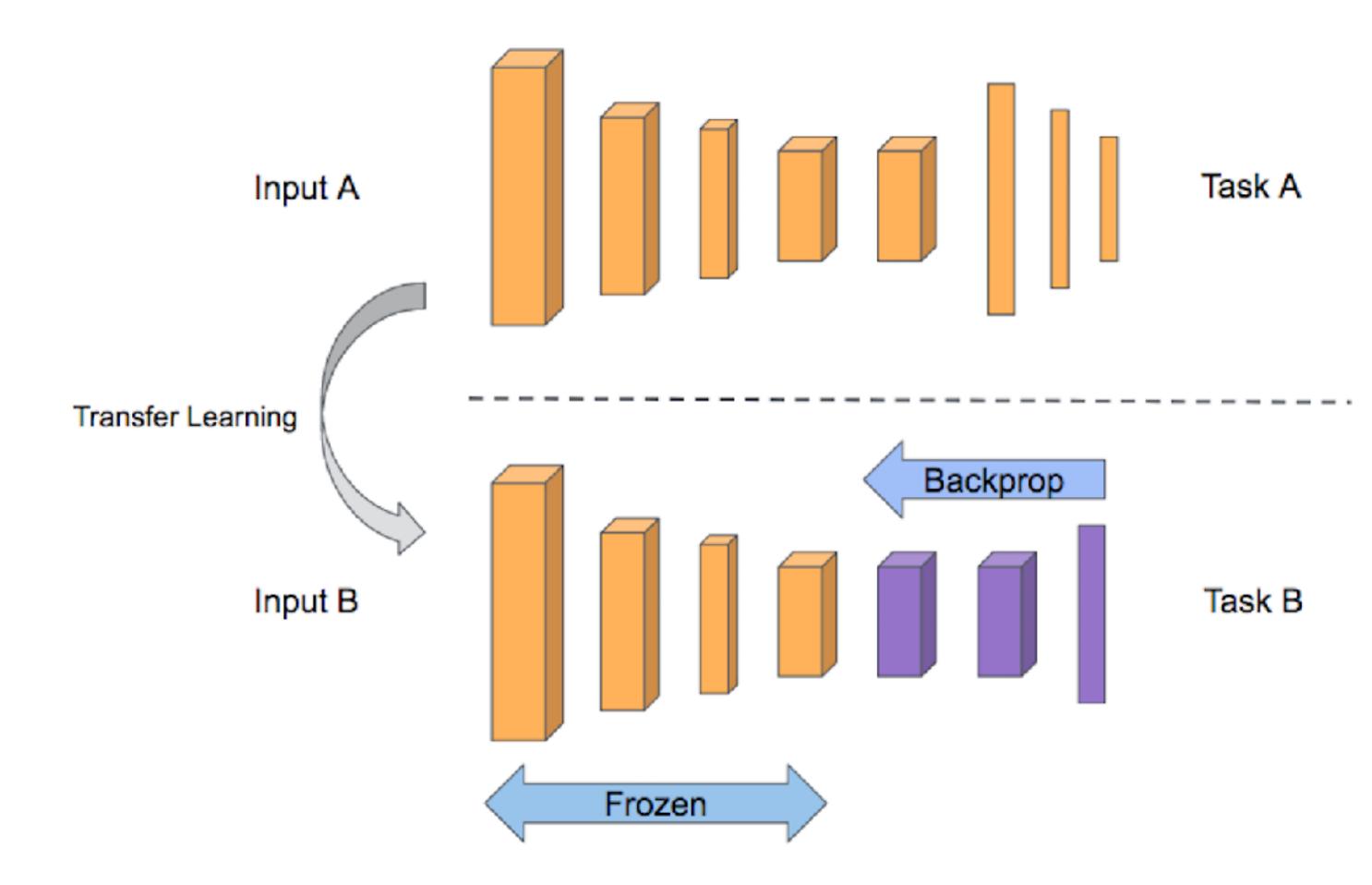
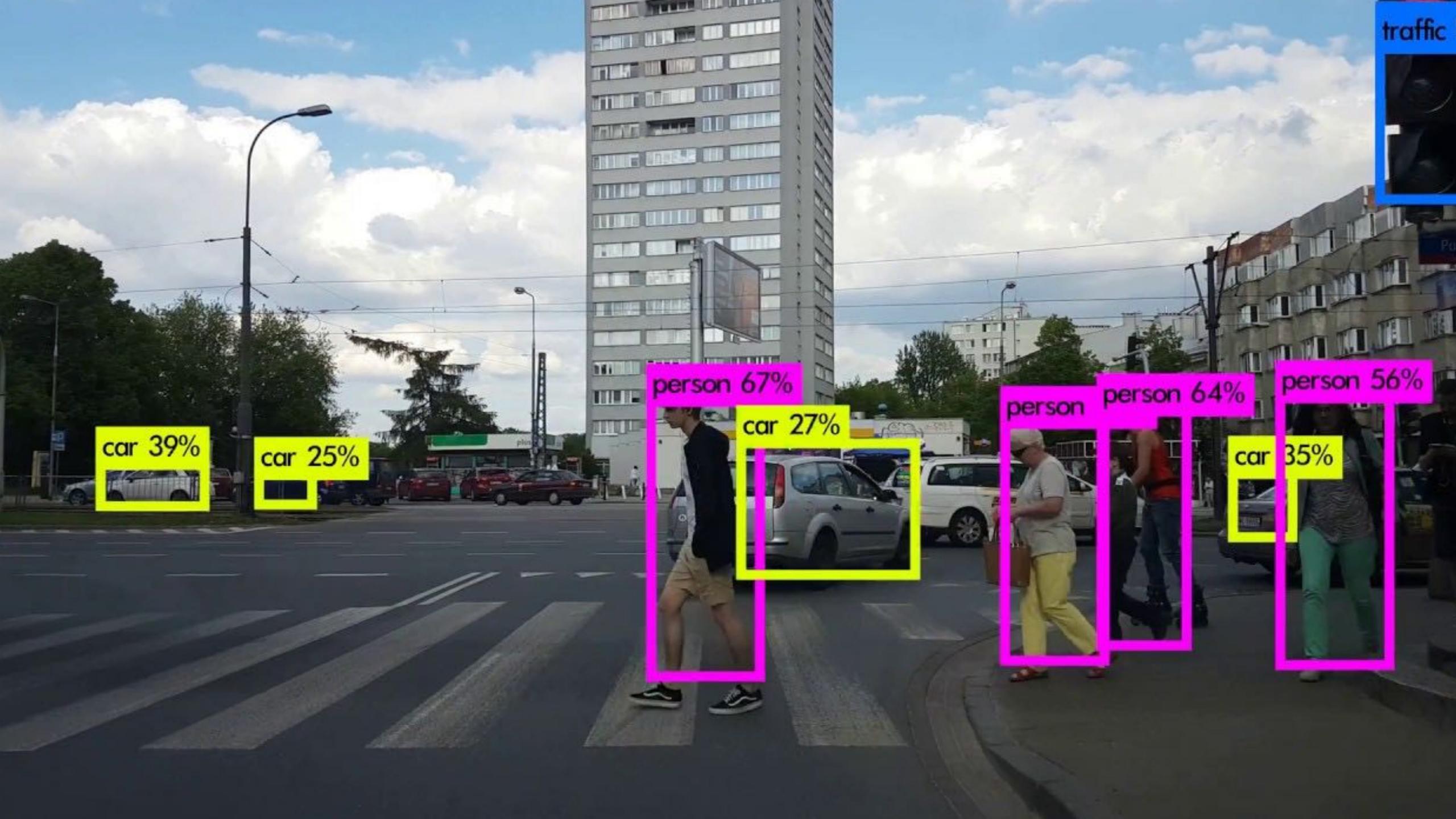


Image source: Dipanjan Sarkar/TowardsDataScience

Transfer Learning

Recall that the convolutional kernels are **learned** during the training process through backward propagation. The trained kernels contains **knowledge** to detect patterns. Why not let a new CNN to **inherit these knowledge**?

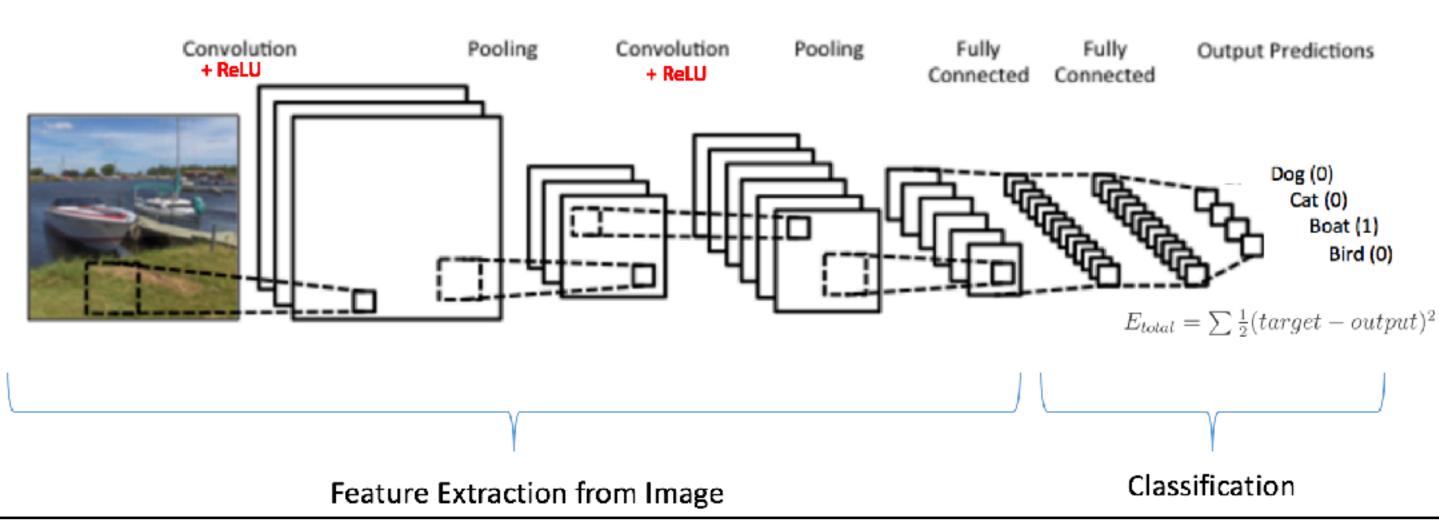




Take home messages

Convolutional neural networks (CNNs)

- ... are inspired by human eyes
- ... are based on the **filtering** technique in data processing
- ... implements filtering by applying the **convolution operation**
- ... encode the data hierarchically in an increasingly abstract way by layers
- ... are vital components of **computer vision**



A convolutional kernel

- ... is a **filter**
- ... is designed automatically during the training process by backward propagation
- ... is used for feature extraction
- ... is a **transferable knowledge**

