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Welcome to the world of computer vision!

How do we let computers “see” something?

Ask ourselves first: How do we (humans) see something?



Human eyes
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leng MOve eye

Retina

Fovea

Iris

Epithelia
cells

= -...)©

Cornea Optic nerve

to brain

Source: Quora



Human brain: the (real) neural network

Source: arimaresearch.com

input retina LGN V1 V2 V3 LOC


http://arimaresearch.com

Representation of images in computers

An image

... IS a matrix/array of intensity values
.. usually consists integers of [0, 255] or float points of [0, 1]
.. each element of this matrix is called a pixel
. can have 1 (greyscale) or multiple (color) channels
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Dense network classifier (MLP)

So far, we have used multi-layer perceptions
(MLP) to carry out some computer vision tasks 9
(e.g., recognizing hand-written digits)... a Dense layer

Flatten layer
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Problem:
* The resulting encoding is pixel location dependent.
o Spatial relationship is not preserved after flattening.



Filters in our daily lives

=

Before wear polarized clip After wear polarized clip

Forget about the commercial advertisements themselves...
Just think about the mathematical principles behind them...



Filter In Image processing

f

h

Using different filters, we can see the same signal in different perspectives.




Convolution

Typically, a filter applies a convolution operation upon the original signal.

1 [:lﬂreaunderf(t)ga-t)

f(x)
ait-c)
(f+gt)

&t

Function: f(?)
Kernel: g(7)
Convolution: (f * g)(¢7)

No sighal = no response
Strong signal — strong response



Filtering: a signal processing technique

Convolution
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Convolution
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Convolution

* The kernel is shifted over the image with a step
size, and computes the output for each position.

* The step size is called stride.

* QOutput has smaller dimension than input:
dim(output) = dim(input) - (dim(kernel) - 1)

 Padding is used to solve this problem, which
artificially make the image “bigger” by adding
synthesis data (typically 0-padding)

Convolved
Feature

Original array

<4— Padded array

Animation: Sumit Saha/Towards Data Science




Multiple convolutional channels

__________ . s T -\
\ feature maps featurd ‘aps
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feature extraction classification

* We apply multiple convolutional filters/kernels to the same image.
* Each filter results in one convolutional channel.
* By learning the same image from different channels, one can detect complex patterns.

Animation: Martin Gorner .
Image: Maurice Peemen



Automatic Kernel Determination

Source layer (image)
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How do we know which kernels to use?

Kernel (filter)

Feature map (activation map)

o

* |n traditional signal processing, a filter is designed by human experts.

* |In deep learning, data are too complex and too many different kernels are needed.

* Therefore, kernels are no longer fixed. They are initialized randomly.

 Kernels are updated through backward propagation, in the way that it learns which features to

detect.
* Gradient descent algorithms are used.



Pooling (downsampling)

We need to discard information gradually.
Pooling is a way of information abstraction.

112

Pooling is usually applied after convolutions. 224X224X64
y 112x112x64
Input pool y
/|13 |5 |2 Output ﬂ
| 4
8 116 mMaxpool 6 y ‘
%
4 9 3 9 stride = 2 9 9 l
08|45
224 : q i 112
—-2R_, ownsampling
224

Max pooling: keep the strongest signal

o Average pooling: use the local average as the signal
Animation: Google Developers



CNN Architecture
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Convolution Neural Network (CNN)

Image credit: Sumit Saha
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e Typically, images become increasingly smaller as they go to the deeper layers;
* Typically, the number of filters increases in the deeper layers;
- Low-level features are limited, thus requires few filters;
- High-level features are rich, thus requires many filters;
 The decision making (i.e., classification) is made in the last layers, typically with dense layers and the softmax

activation function.



AlexNet
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Krizhevsky et al. 2012 (NIPS). 58k+ citations!


https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Do we need to go deeper?

A modern CNN uses multiple convolution modules.
“We need to go deeper” — a popular view in the Al community before 2015. Really?

Conv. Module #1 Conv. Module #2 Classification

- - output: cat? (y/n)

conv2d maxpool convad maxpool fully fully
Input + RelU + RelLU connected  connected

Image credit: Google Developers



Do we need to go deeper?

A modern CNN uses multiple convolution modules.

“We need to go deeper” — a popular view in the Al community before 2015. Really?
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented 1n Fig. 4.

He et al. (2015, arXiv:1512.03385)

Answer: yes and no.

Deeper networks have larger
training/testing error, mainly due to
the vanishing gradient problem.

But deeper networks are needed to
deal with more complex data.


https://arxiv.org/pdf/1512.03385.pdf

Residual blocks

Low-level features High-level features
Specific Abstract
Shortcut

How about letting deep layers to have direct access to low-level features?
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https://arxiv.org/pdf/1512.03385.pdf

Transfer Learning

Recall that the convolutional kernels are learned during the training process through backward propagation.
The trained kernels contains knowledge to detect patterns.
Why not let a new CNN to inherit these knowledge?

Traditional ML VS Transfer Learning

Learning System ‘ Learning System
Dataset 1 ‘ Task 1 Dataset 1 Task 1

3
EKnowledgei

Learning System ‘ Learning System
Dataset2 ‘ Task 2 Task 2




Transfer Learning

Recall that the convolutional kernels are learned during the training process through backward propagation.
The trained kernels contains knowledge to detect patterns.
Why not let a new CNN to inherit these knowledge?

P

[ loss J"
f

softmax
fc2

fc1

conv3

conv2

convi

|

Data and labels (e.g. ImageNet)

TRANSFER

Shallow classifier (e.g. SVM)

~1___ [ features

fc1

conv3

convz

conv1

|

Target data and labels

Image source: Dipanjan Sarkar/TowardsDataScience



Transfer Learning

Recall that the convolutional kernels are learned during the training process through backward propagation.
The trained kernels contains knowledge to detect patterns.
Why not let a new CNN to inherit these knowledge?

Input A j j Task A

\\\\1> < Backprop

Input B i i I Task B

O b
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Take home messages

Convolutional neural networks (CNNSs)
. are inspired by human eyes
. are based on the filtering technique in data processing
. Implements filtering by applying the convolution operation
. encode the data hierarchically in an increasingly abstract way by layers
. are vital components of computer vision

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU + RelU Connected Connected

Dog (0)
Cat (0)
Boat (1)
Bird (0)

A convolutional kernel
. 1S a filter Feature Extraction from Image Classification

. IS desighed automatically during the training process by backward propagation
. IS used for feature extraction
. I1s a transferable knowledge



