Neural Symplectic Integrator with Hamiltonian Inductive Bias for the Gravitational N-body Problem

Authors: 

Cai, Maxwell X. ; Portegies Zwart, Simon ; Podareanu, Damian

Publication date: 
December, 2021
Journal: 
NeurIPS 2021 workshop
Abstract: 

The gravitational N-body problem, which is fundamentally important in astrophysics to predict the motion of N celestial bodies under the mutual gravity of each other, is usually solved numerically because there is no known general analytical solution for N>2 . Can an N-body problem be solved accurately by a neural network (NN)? Can a NN observe long-term conservation of energy and orbital angular momentum? Inspired by Wistom & Holman (1991)'s symplectic map, we present a neural N-body integrator for splitting the Hamiltonian into a two-body part, solvable analytically, and an interaction part that we approximate with a NN. Our neural symplectic N-body code integrates a general three-body system for 10^5 steps without diverting from the ground truth dynamics obtained from a traditional N-body integrator. Moreover, it exhibits good inductive bias by successfully predicting the evolution of N-body systems that are no part of the training set.